Metamath Proof Explorer


Theorem prdsdsval3

Description: Value of the metric in a structure product. (Contributed by Mario Carneiro, 27-Aug-2015)

Ref Expression
Hypotheses prdsbasmpt2.y Y = S 𝑠 x I R
prdsbasmpt2.b B = Base Y
prdsbasmpt2.s φ S V
prdsbasmpt2.i φ I W
prdsbasmpt2.r φ x I R X
prdsdsval2.f φ F B
prdsdsval2.g φ G B
prdsdsval3.k K = Base R
prdsdsval3.e E = dist R K × K
prdsdsval3.d D = dist Y
Assertion prdsdsval3 φ F D G = sup ran x I F x E G x 0 * <

Proof

Step Hyp Ref Expression
1 prdsbasmpt2.y Y = S 𝑠 x I R
2 prdsbasmpt2.b B = Base Y
3 prdsbasmpt2.s φ S V
4 prdsbasmpt2.i φ I W
5 prdsbasmpt2.r φ x I R X
6 prdsdsval2.f φ F B
7 prdsdsval2.g φ G B
8 prdsdsval3.k K = Base R
9 prdsdsval3.e E = dist R K × K
10 prdsdsval3.d D = dist Y
11 eqid dist R = dist R
12 1 2 3 4 5 6 7 11 10 prdsdsval2 φ F D G = sup ran x I F x dist R G x 0 * <
13 eqidd φ I = I
14 1 2 3 4 5 8 6 prdsbascl φ x I F x K
15 1 2 3 4 5 8 7 prdsbascl φ x I G x K
16 9 oveqi F x E G x = F x dist R K × K G x
17 ovres F x K G x K F x dist R K × K G x = F x dist R G x
18 16 17 syl5eq F x K G x K F x E G x = F x dist R G x
19 18 ex F x K G x K F x E G x = F x dist R G x
20 19 ral2imi x I F x K x I G x K x I F x E G x = F x dist R G x
21 14 15 20 sylc φ x I F x E G x = F x dist R G x
22 mpteq12 I = I x I F x E G x = F x dist R G x x I F x E G x = x I F x dist R G x
23 13 21 22 syl2anc φ x I F x E G x = x I F x dist R G x
24 23 rneqd φ ran x I F x E G x = ran x I F x dist R G x
25 24 uneq1d φ ran x I F x E G x 0 = ran x I F x dist R G x 0
26 25 supeq1d φ sup ran x I F x E G x 0 * < = sup ran x I F x dist R G x 0 * <
27 12 26 eqtr4d φ F D G = sup ran x I F x E G x 0 * <