Metamath Proof Explorer


Theorem prdsdsval3

Description: Value of the metric in a structure product. (Contributed by Mario Carneiro, 27-Aug-2015)

Ref Expression
Hypotheses prdsbasmpt2.y Y=S𝑠xIR
prdsbasmpt2.b B=BaseY
prdsbasmpt2.s φSV
prdsbasmpt2.i φIW
prdsbasmpt2.r φxIRX
prdsdsval2.f φFB
prdsdsval2.g φGB
prdsdsval3.k K=BaseR
prdsdsval3.e E=distRK×K
prdsdsval3.d D=distY
Assertion prdsdsval3 φFDG=supranxIFxEGx0*<

Proof

Step Hyp Ref Expression
1 prdsbasmpt2.y Y=S𝑠xIR
2 prdsbasmpt2.b B=BaseY
3 prdsbasmpt2.s φSV
4 prdsbasmpt2.i φIW
5 prdsbasmpt2.r φxIRX
6 prdsdsval2.f φFB
7 prdsdsval2.g φGB
8 prdsdsval3.k K=BaseR
9 prdsdsval3.e E=distRK×K
10 prdsdsval3.d D=distY
11 eqid distR=distR
12 1 2 3 4 5 6 7 11 10 prdsdsval2 φFDG=supranxIFxdistRGx0*<
13 eqidd φI=I
14 1 2 3 4 5 8 6 prdsbascl φxIFxK
15 1 2 3 4 5 8 7 prdsbascl φxIGxK
16 9 oveqi FxEGx=FxdistRK×KGx
17 ovres FxKGxKFxdistRK×KGx=FxdistRGx
18 16 17 eqtrid FxKGxKFxEGx=FxdistRGx
19 18 ex FxKGxKFxEGx=FxdistRGx
20 19 ral2imi xIFxKxIGxKxIFxEGx=FxdistRGx
21 14 15 20 sylc φxIFxEGx=FxdistRGx
22 mpteq12 I=IxIFxEGx=FxdistRGxxIFxEGx=xIFxdistRGx
23 13 21 22 syl2anc φxIFxEGx=xIFxdistRGx
24 23 rneqd φranxIFxEGx=ranxIFxdistRGx
25 24 uneq1d φranxIFxEGx0=ranxIFxdistRGx0
26 25 supeq1d φsupranxIFxEGx0*<=supranxIFxdistRGx0*<
27 12 26 eqtr4d φFDG=supranxIFxEGx0*<