Metamath Proof Explorer


Theorem prdsmulrfval

Description: Value of a structure product's ring product at a single coordinate. (Contributed by Mario Carneiro, 11-Jan-2015)

Ref Expression
Hypotheses prdsbasmpt.y Y=S𝑠R
prdsbasmpt.b B=BaseY
prdsbasmpt.s φSV
prdsbasmpt.i φIW
prdsbasmpt.r φRFnI
prdsplusgval.f φFB
prdsplusgval.g φGB
prdsmulrval.t ·˙=Y
prdsmulrfval.j φJI
Assertion prdsmulrfval φF·˙GJ=FJRJGJ

Proof

Step Hyp Ref Expression
1 prdsbasmpt.y Y=S𝑠R
2 prdsbasmpt.b B=BaseY
3 prdsbasmpt.s φSV
4 prdsbasmpt.i φIW
5 prdsbasmpt.r φRFnI
6 prdsplusgval.f φFB
7 prdsplusgval.g φGB
8 prdsmulrval.t ·˙=Y
9 prdsmulrfval.j φJI
10 1 2 3 4 5 6 7 8 prdsmulrval φF·˙G=xIFxRxGx
11 10 fveq1d φF·˙GJ=xIFxRxGxJ
12 2fveq3 x=JRx=RJ
13 fveq2 x=JFx=FJ
14 fveq2 x=JGx=GJ
15 12 13 14 oveq123d x=JFxRxGx=FJRJGJ
16 eqid xIFxRxGx=xIFxRxGx
17 ovex FJRJGJV
18 15 16 17 fvmpt JIxIFxRxGxJ=FJRJGJ
19 9 18 syl φxIFxRxGxJ=FJRJGJ
20 11 19 eqtrd φF·˙GJ=FJRJGJ