Metamath Proof Explorer


Theorem precofcl

Description: The pre-composition functor as a transposed curry of the functor composition bifunctor is a functor. (Contributed by Zhi Wang, 11-Oct-2025)

Ref Expression
Hypotheses precofval.q Q = C FuncCat D
precofval.r R = D FuncCat E
precofval.o No typesetting found for |- ( ph -> .o. = ( <. Q , R >. curryF ( ( <. C , D >. o.F E ) o.func ( Q swapF R ) ) ) ) with typecode |-
precofval.f φ F C Func D
precofval.e φ E Cat
precofval.k No typesetting found for |- ( ph -> K = ( ( 1st ` .o. ) ` F ) ) with typecode |-
precofcl.s S = C FuncCat E
Assertion precofcl φ K R Func S

Proof

Step Hyp Ref Expression
1 precofval.q Q = C FuncCat D
2 precofval.r R = D FuncCat E
3 precofval.o Could not format ( ph -> .o. = ( <. Q , R >. curryF ( ( <. C , D >. o.F E ) o.func ( Q swapF R ) ) ) ) : No typesetting found for |- ( ph -> .o. = ( <. Q , R >. curryF ( ( <. C , D >. o.F E ) o.func ( Q swapF R ) ) ) ) with typecode |-
4 precofval.f φ F C Func D
5 precofval.e φ E Cat
6 precofval.k Could not format ( ph -> K = ( ( 1st ` .o. ) ` F ) ) : No typesetting found for |- ( ph -> K = ( ( 1st ` .o. ) ` F ) ) with typecode |-
7 precofcl.s S = C FuncCat E
8 1 fucbas C Func D = Base Q
9 relfunc Rel C Func D
10 1st2ndbr Rel C Func D F C Func D 1 st F C Func D 2 nd F
11 9 4 10 sylancr φ 1 st F C Func D 2 nd F
12 11 funcrcl2 φ C Cat
13 11 funcrcl3 φ D Cat
14 1 12 13 fuccat φ Q Cat
15 2 13 5 fuccat φ R Cat
16 2 1 oveq12i R × c Q = D FuncCat E × c C FuncCat D
17 16 7 12 13 5 fucofunca Could not format ( ph -> ( <. C , D >. o.F E ) e. ( ( R Xc. Q ) Func S ) ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) e. ( ( R Xc. Q ) Func S ) ) with typecode |-
18 3 8 14 15 17 4 6 tposcurf1cl φ K R Func S