Metamath Proof Explorer


Theorem preex

Description: The successor-predecessor exists. (Contributed by Peter Mazsa, 12-Jan-2026)

Ref Expression
Assertion preex Could not format assertion : No typesetting found for |- pre N e. _V with typecode |-

Proof

Step Hyp Ref Expression
1 df-pre Could not format pre N = ( iota m m e. Pred ( SucMap , dom SucMap , N ) ) : No typesetting found for |- pre N = ( iota m m e. Pred ( SucMap , dom SucMap , N ) ) with typecode |-
2 iotaex Could not format ( iota m m e. Pred ( SucMap , dom SucMap , N ) ) e. _V : No typesetting found for |- ( iota m m e. Pred ( SucMap , dom SucMap , N ) ) e. _V with typecode |-
3 1 2 eqeltri Could not format pre N e. _V : No typesetting found for |- pre N e. _V with typecode |-