Metamath Proof Explorer
		
		
		
		Description:  A proper class vanishes in an unordered pair.  (Contributed by NM, 15-Jul-1993)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | prprc1 |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | snprc |  | 
						
							| 2 |  | uneq1 |  | 
						
							| 3 |  | df-pr |  | 
						
							| 4 |  | uncom |  | 
						
							| 5 |  | un0 |  | 
						
							| 6 | 4 5 | eqtr2i |  | 
						
							| 7 | 2 3 6 | 3eqtr4g |  | 
						
							| 8 | 1 7 | sylbi |  |