Metamath Proof Explorer


Theorem prstcnid

Description: Components other than Hom and comp are unchanged. (Contributed by Zhi Wang, 20-Sep-2024)

Ref Expression
Hypotheses prstcnid.c No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
prstcnid.k φ K Proset
prstcnid.e E = Slot E ndx
prstcnid.no E ndx comp ndx
prstcnid.nh E ndx Hom ndx
Assertion prstcnid φ E K = E C

Proof

Step Hyp Ref Expression
1 prstcnid.c Could not format ( ph -> C = ( ProsetToCat ` K ) ) : No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
2 prstcnid.k φ K Proset
3 prstcnid.e E = Slot E ndx
4 prstcnid.no E ndx comp ndx
5 prstcnid.nh E ndx Hom ndx
6 3 5 setsnid E K = E K sSet Hom ndx K × 1 𝑜
7 1 2 3 4 prstcnidlem φ E C = E K sSet Hom ndx K × 1 𝑜
8 6 7 eqtr4id φ E K = E C