Metamath Proof Explorer


Theorem psgnevpm

Description: A permutation which is even has sign 1. (Contributed by SO, 9-Jul-2018)

Ref Expression
Hypotheses evpmss.s S=SymGrpD
evpmss.p P=BaseS
psgnevpmb.n N=pmSgnD
Assertion psgnevpm DFinFpmEvenDNF=1

Proof

Step Hyp Ref Expression
1 evpmss.s S=SymGrpD
2 evpmss.p P=BaseS
3 psgnevpmb.n N=pmSgnD
4 1 2 3 psgnevpmb DFinFpmEvenDFPNF=1
5 4 simplbda DFinFpmEvenDNF=1