Metamath Proof Explorer


Theorem psgnevpmb

Description: A class is an even permutation if it is a permutation with sign 1. (Contributed by SO, 9-Jul-2018)

Ref Expression
Hypotheses evpmss.s S=SymGrpD
evpmss.p P=BaseS
psgnevpmb.n N=pmSgnD
Assertion psgnevpmb DFinFpmEvenDFPNF=1

Proof

Step Hyp Ref Expression
1 evpmss.s S=SymGrpD
2 evpmss.p P=BaseS
3 psgnevpmb.n N=pmSgnD
4 elex DFinDV
5 fveq2 d=DpmSgnd=pmSgnD
6 5 3 eqtr4di d=DpmSgnd=N
7 6 cnveqd d=DpmSgnd-1=N-1
8 7 imaeq1d d=DpmSgnd-11=N-11
9 df-evpm pmEven=dVpmSgnd-11
10 3 fvexi NV
11 10 cnvex N-1V
12 11 imaex N-11V
13 8 9 12 fvmpt DVpmEvenD=N-11
14 4 13 syl DFinpmEvenD=N-11
15 14 eleq2d DFinFpmEvenDFN-11
16 eqid mulGrpfld𝑠11=mulGrpfld𝑠11
17 1 3 16 psgnghm2 DFinNSGrpHommulGrpfld𝑠11
18 eqid BasemulGrpfld𝑠11=BasemulGrpfld𝑠11
19 2 18 ghmf NSGrpHommulGrpfld𝑠11N:PBasemulGrpfld𝑠11
20 17 19 syl DFinN:PBasemulGrpfld𝑠11
21 ffn N:PBasemulGrpfld𝑠11NFnP
22 fniniseg NFnPFN-11FPNF=1
23 20 21 22 3syl DFinFN-11FPNF=1
24 15 23 bitrd DFinFpmEvenDFPNF=1