Metamath Proof Explorer


Theorem psgnodpm

Description: A permutation which is odd (i.e. not even) has sign -1. (Contributed by SO, 9-Jul-2018)

Ref Expression
Hypotheses evpmss.s S = SymGrp D
evpmss.p P = Base S
psgnevpmb.n N = pmSgn D
Assertion psgnodpm D Fin F P pmEven D N F = 1

Proof

Step Hyp Ref Expression
1 evpmss.s S = SymGrp D
2 evpmss.p P = Base S
3 psgnevpmb.n N = pmSgn D
4 eldif F P pmEven D F P ¬ F pmEven D
5 simpr D Fin F P F P
6 5 a1d D Fin F P N F = 1 F P
7 6 ancrd D Fin F P N F = 1 F P N F = 1
8 1 2 3 psgnevpmb D Fin F pmEven D F P N F = 1
9 8 adantr D Fin F P F pmEven D F P N F = 1
10 7 9 sylibrd D Fin F P N F = 1 F pmEven D
11 10 con3d D Fin F P ¬ F pmEven D ¬ N F = 1
12 11 impr D Fin F P ¬ F pmEven D ¬ N F = 1
13 4 12 sylan2b D Fin F P pmEven D ¬ N F = 1
14 eqid mulGrp fld 𝑠 1 1 = mulGrp fld 𝑠 1 1
15 1 3 14 psgnghm2 D Fin N S GrpHom mulGrp fld 𝑠 1 1
16 15 adantr D Fin F P pmEven D N S GrpHom mulGrp fld 𝑠 1 1
17 14 cnmsgnbas 1 1 = Base mulGrp fld 𝑠 1 1
18 2 17 ghmf N S GrpHom mulGrp fld 𝑠 1 1 N : P 1 1
19 16 18 syl D Fin F P pmEven D N : P 1 1
20 eldifi F P pmEven D F P
21 20 adantl D Fin F P pmEven D F P
22 19 21 ffvelrnd D Fin F P pmEven D N F 1 1
23 fvex N F V
24 23 elpr N F 1 1 N F = 1 N F = 1
25 22 24 sylib D Fin F P pmEven D N F = 1 N F = 1
26 orel1 ¬ N F = 1 N F = 1 N F = 1 N F = 1
27 13 25 26 sylc D Fin F P pmEven D N F = 1