Metamath Proof Explorer


Theorem psgnghm2

Description: The sign is a homomorphism from the finite symmetric group to the numeric signs. (Contributed by Stefan O'Rear, 28-Aug-2015)

Ref Expression
Hypotheses psgnghm2.s S=SymGrpD
psgnghm2.n N=pmSgnD
psgnghm2.u U=mulGrpfld𝑠11
Assertion psgnghm2 DFinNSGrpHomU

Proof

Step Hyp Ref Expression
1 psgnghm2.s S=SymGrpD
2 psgnghm2.n N=pmSgnD
3 psgnghm2.u U=mulGrpfld𝑠11
4 eqid S𝑠domN=S𝑠domN
5 1 2 4 3 psgnghm DFinNS𝑠domNGrpHomU
6 eqid BaseS=BaseS
7 1 6 sygbasnfpfi DFinxBaseSdomxIFin
8 7 ralrimiva DFinxBaseSdomxIFin
9 rabid2 BaseS=xBaseS|domxIFinxBaseSdomxIFin
10 8 9 sylibr DFinBaseS=xBaseS|domxIFin
11 eqid xBaseS|domxIFin=xBaseS|domxIFin
12 1 6 11 2 psgnfn NFnxBaseS|domxIFin
13 12 fndmi domN=xBaseS|domxIFin
14 10 13 eqtr4di DFinBaseS=domN
15 eqimss BaseS=domNBaseSdomN
16 1 fvexi SV
17 2 fvexi NV
18 17 dmex domNV
19 4 6 ressid2 BaseSdomNSVdomNVS𝑠domN=S
20 16 18 19 mp3an23 BaseSdomNS𝑠domN=S
21 14 15 20 3syl DFinS𝑠domN=S
22 21 oveq1d DFinS𝑠domNGrpHomU=SGrpHomU
23 5 22 eleqtrd DFinNSGrpHomU