Metamath Proof Explorer


Theorem psgninv

Description: The sign of a permutation equals the sign of the inverse of the permutation. (Contributed by SO, 9-Jul-2018)

Ref Expression
Hypotheses psgninv.s S=SymGrpD
psgninv.n N=pmSgnD
psgninv.p P=BaseS
Assertion psgninv DFinFPNF-1=NF

Proof

Step Hyp Ref Expression
1 psgninv.s S=SymGrpD
2 psgninv.n N=pmSgnD
3 psgninv.p P=BaseS
4 eqid mulGrpfld𝑠11=mulGrpfld𝑠11
5 1 2 4 psgnghm2 DFinNSGrpHommulGrpfld𝑠11
6 eqid invgS=invgS
7 eqid invgmulGrpfld𝑠11=invgmulGrpfld𝑠11
8 3 6 7 ghminv NSGrpHommulGrpfld𝑠11FPNinvgSF=invgmulGrpfld𝑠11NF
9 5 8 sylan DFinFPNinvgSF=invgmulGrpfld𝑠11NF
10 1 3 6 symginv FPinvgSF=F-1
11 10 adantl DFinFPinvgSF=F-1
12 11 fveq2d DFinFPNinvgSF=NF-1
13 eqid mulGrpfld𝑠0=mulGrpfld𝑠0
14 13 cnmsgnsubg 11SubGrpmulGrpfld𝑠0
15 4 cnmsgnbas 11=BasemulGrpfld𝑠11
16 3 15 ghmf NSGrpHommulGrpfld𝑠11N:P11
17 5 16 syl DFinN:P11
18 17 ffvelcdmda DFinFPNF11
19 cnex V
20 19 difexi 0V
21 ax-1cn 1
22 ax-1ne0 10
23 eldifsn 10110
24 21 22 23 mpbir2an 10
25 neg1cn 1
26 neg1ne0 10
27 eldifsn 10110
28 25 26 27 mpbir2an 10
29 prssi 1010110
30 24 28 29 mp2an 110
31 ressabs 0V110mulGrpfld𝑠0𝑠11=mulGrpfld𝑠11
32 20 30 31 mp2an mulGrpfld𝑠0𝑠11=mulGrpfld𝑠11
33 32 eqcomi mulGrpfld𝑠11=mulGrpfld𝑠0𝑠11
34 cnfldbas =Basefld
35 cnfld0 0=0fld
36 cndrng fldDivRing
37 34 35 36 drngui 0=Unitfld
38 eqid invrfld=invrfld
39 37 13 38 invrfval invrfld=invgmulGrpfld𝑠0
40 33 39 7 subginv 11SubGrpmulGrpfld𝑠0NF11invrfldNF=invgmulGrpfld𝑠11NF
41 14 18 40 sylancr DFinFPinvrfldNF=invgmulGrpfld𝑠11NF
42 30 18 sselid DFinFPNF0
43 eldifsn NF0NFNF0
44 42 43 sylib DFinFPNFNF0
45 cnfldinv NFNF0invrfldNF=1NF
46 44 45 syl DFinFPinvrfldNF=1NF
47 41 46 eqtr3d DFinFPinvgmulGrpfld𝑠11NF=1NF
48 9 12 47 3eqtr3d DFinFPNF-1=1NF
49 fvex NFV
50 49 elpr NF11NF=1NF=1
51 1div1e1 11=1
52 oveq2 NF=11NF=11
53 id NF=1NF=1
54 51 52 53 3eqtr4a NF=11NF=NF
55 divneg2 111011=11
56 21 21 22 55 mp3an 11=11
57 51 negeqi 11=1
58 56 57 eqtr3i 11=1
59 oveq2 NF=11NF=11
60 id NF=1NF=1
61 58 59 60 3eqtr4a NF=11NF=NF
62 54 61 jaoi NF=1NF=11NF=NF
63 50 62 sylbi NF111NF=NF
64 18 63 syl DFinFP1NF=NF
65 48 64 eqtrd DFinFPNF-1=NF