Metamath Proof Explorer


Theorem psgnco

Description: Multiplicativity of the permutation sign function. (Contributed by SO, 9-Jul-2018)

Ref Expression
Hypotheses psgninv.s S=SymGrpD
psgninv.n N=pmSgnD
psgninv.p P=BaseS
Assertion psgnco DFinFPGPNFG=NFNG

Proof

Step Hyp Ref Expression
1 psgninv.s S=SymGrpD
2 psgninv.n N=pmSgnD
3 psgninv.p P=BaseS
4 eqid +S=+S
5 1 3 4 symgov FPGPF+SG=FG
6 5 3adant1 DFinFPGPF+SG=FG
7 6 fveq2d DFinFPGPNF+SG=NFG
8 eqid mulGrpfld𝑠11=mulGrpfld𝑠11
9 1 2 8 psgnghm2 DFinNSGrpHommulGrpfld𝑠11
10 prex 11V
11 eqid mulGrpfld=mulGrpfld
12 cnfldmul ×=fld
13 11 12 mgpplusg ×=+mulGrpfld
14 8 13 ressplusg 11V×=+mulGrpfld𝑠11
15 10 14 ax-mp ×=+mulGrpfld𝑠11
16 3 4 15 ghmlin NSGrpHommulGrpfld𝑠11FPGPNF+SG=NFNG
17 9 16 syl3an1 DFinFPGPNF+SG=NFNG
18 7 17 eqtr3d DFinFPGPNFG=NFNG