| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgninv.s |  |-  S = ( SymGrp ` D ) | 
						
							| 2 |  | psgninv.n |  |-  N = ( pmSgn ` D ) | 
						
							| 3 |  | psgninv.p |  |-  P = ( Base ` S ) | 
						
							| 4 |  | eqid |  |-  ( +g ` S ) = ( +g ` S ) | 
						
							| 5 | 1 3 4 | symgov |  |-  ( ( F e. P /\ G e. P ) -> ( F ( +g ` S ) G ) = ( F o. G ) ) | 
						
							| 6 | 5 | 3adant1 |  |-  ( ( D e. Fin /\ F e. P /\ G e. P ) -> ( F ( +g ` S ) G ) = ( F o. G ) ) | 
						
							| 7 | 6 | fveq2d |  |-  ( ( D e. Fin /\ F e. P /\ G e. P ) -> ( N ` ( F ( +g ` S ) G ) ) = ( N ` ( F o. G ) ) ) | 
						
							| 8 |  | eqid |  |-  ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) | 
						
							| 9 | 1 2 8 | psgnghm2 |  |-  ( D e. Fin -> N e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) | 
						
							| 10 |  | prex |  |-  { 1 , -u 1 } e. _V | 
						
							| 11 |  | eqid |  |-  ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) | 
						
							| 12 |  | cnfldmul |  |-  x. = ( .r ` CCfld ) | 
						
							| 13 | 11 12 | mgpplusg |  |-  x. = ( +g ` ( mulGrp ` CCfld ) ) | 
						
							| 14 | 8 13 | ressplusg |  |-  ( { 1 , -u 1 } e. _V -> x. = ( +g ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) | 
						
							| 15 | 10 14 | ax-mp |  |-  x. = ( +g ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) | 
						
							| 16 | 3 4 15 | ghmlin |  |-  ( ( N e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) /\ F e. P /\ G e. P ) -> ( N ` ( F ( +g ` S ) G ) ) = ( ( N ` F ) x. ( N ` G ) ) ) | 
						
							| 17 | 9 16 | syl3an1 |  |-  ( ( D e. Fin /\ F e. P /\ G e. P ) -> ( N ` ( F ( +g ` S ) G ) ) = ( ( N ` F ) x. ( N ` G ) ) ) | 
						
							| 18 | 7 17 | eqtr3d |  |-  ( ( D e. Fin /\ F e. P /\ G e. P ) -> ( N ` ( F o. G ) ) = ( ( N ` F ) x. ( N ` G ) ) ) |