Metamath Proof Explorer


Theorem psgnghm2

Description: The sign is a homomorphism from the finite symmetric group to the numeric signs. (Contributed by Stefan O'Rear, 28-Aug-2015)

Ref Expression
Hypotheses psgnghm2.s
|- S = ( SymGrp ` D )
psgnghm2.n
|- N = ( pmSgn ` D )
psgnghm2.u
|- U = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } )
Assertion psgnghm2
|- ( D e. Fin -> N e. ( S GrpHom U ) )

Proof

Step Hyp Ref Expression
1 psgnghm2.s
 |-  S = ( SymGrp ` D )
2 psgnghm2.n
 |-  N = ( pmSgn ` D )
3 psgnghm2.u
 |-  U = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } )
4 eqid
 |-  ( S |`s dom N ) = ( S |`s dom N )
5 1 2 4 3 psgnghm
 |-  ( D e. Fin -> N e. ( ( S |`s dom N ) GrpHom U ) )
6 eqid
 |-  ( Base ` S ) = ( Base ` S )
7 1 6 sygbasnfpfi
 |-  ( ( D e. Fin /\ x e. ( Base ` S ) ) -> dom ( x \ _I ) e. Fin )
8 7 ralrimiva
 |-  ( D e. Fin -> A. x e. ( Base ` S ) dom ( x \ _I ) e. Fin )
9 rabid2
 |-  ( ( Base ` S ) = { x e. ( Base ` S ) | dom ( x \ _I ) e. Fin } <-> A. x e. ( Base ` S ) dom ( x \ _I ) e. Fin )
10 8 9 sylibr
 |-  ( D e. Fin -> ( Base ` S ) = { x e. ( Base ` S ) | dom ( x \ _I ) e. Fin } )
11 eqid
 |-  { x e. ( Base ` S ) | dom ( x \ _I ) e. Fin } = { x e. ( Base ` S ) | dom ( x \ _I ) e. Fin }
12 1 6 11 2 psgnfn
 |-  N Fn { x e. ( Base ` S ) | dom ( x \ _I ) e. Fin }
13 12 fndmi
 |-  dom N = { x e. ( Base ` S ) | dom ( x \ _I ) e. Fin }
14 10 13 eqtr4di
 |-  ( D e. Fin -> ( Base ` S ) = dom N )
15 eqimss
 |-  ( ( Base ` S ) = dom N -> ( Base ` S ) C_ dom N )
16 1 fvexi
 |-  S e. _V
17 2 fvexi
 |-  N e. _V
18 17 dmex
 |-  dom N e. _V
19 4 6 ressid2
 |-  ( ( ( Base ` S ) C_ dom N /\ S e. _V /\ dom N e. _V ) -> ( S |`s dom N ) = S )
20 16 18 19 mp3an23
 |-  ( ( Base ` S ) C_ dom N -> ( S |`s dom N ) = S )
21 14 15 20 3syl
 |-  ( D e. Fin -> ( S |`s dom N ) = S )
22 21 oveq1d
 |-  ( D e. Fin -> ( ( S |`s dom N ) GrpHom U ) = ( S GrpHom U ) )
23 5 22 eleqtrd
 |-  ( D e. Fin -> N e. ( S GrpHom U ) )