Metamath Proof Explorer


Theorem psgnevpmb

Description: A class is an even permutation if it is a permutation with sign 1. (Contributed by SO, 9-Jul-2018)

Ref Expression
Hypotheses evpmss.s 𝑆 = ( SymGrp ‘ 𝐷 )
evpmss.p 𝑃 = ( Base ‘ 𝑆 )
psgnevpmb.n 𝑁 = ( pmSgn ‘ 𝐷 )
Assertion psgnevpmb ( 𝐷 ∈ Fin → ( 𝐹 ∈ ( pmEven ‘ 𝐷 ) ↔ ( 𝐹𝑃 ∧ ( 𝑁𝐹 ) = 1 ) ) )

Proof

Step Hyp Ref Expression
1 evpmss.s 𝑆 = ( SymGrp ‘ 𝐷 )
2 evpmss.p 𝑃 = ( Base ‘ 𝑆 )
3 psgnevpmb.n 𝑁 = ( pmSgn ‘ 𝐷 )
4 elex ( 𝐷 ∈ Fin → 𝐷 ∈ V )
5 fveq2 ( 𝑑 = 𝐷 → ( pmSgn ‘ 𝑑 ) = ( pmSgn ‘ 𝐷 ) )
6 5 3 eqtr4di ( 𝑑 = 𝐷 → ( pmSgn ‘ 𝑑 ) = 𝑁 )
7 6 cnveqd ( 𝑑 = 𝐷 ( pmSgn ‘ 𝑑 ) = 𝑁 )
8 7 imaeq1d ( 𝑑 = 𝐷 → ( ( pmSgn ‘ 𝑑 ) “ { 1 } ) = ( 𝑁 “ { 1 } ) )
9 df-evpm pmEven = ( 𝑑 ∈ V ↦ ( ( pmSgn ‘ 𝑑 ) “ { 1 } ) )
10 3 fvexi 𝑁 ∈ V
11 10 cnvex 𝑁 ∈ V
12 11 imaex ( 𝑁 “ { 1 } ) ∈ V
13 8 9 12 fvmpt ( 𝐷 ∈ V → ( pmEven ‘ 𝐷 ) = ( 𝑁 “ { 1 } ) )
14 4 13 syl ( 𝐷 ∈ Fin → ( pmEven ‘ 𝐷 ) = ( 𝑁 “ { 1 } ) )
15 14 eleq2d ( 𝐷 ∈ Fin → ( 𝐹 ∈ ( pmEven ‘ 𝐷 ) ↔ 𝐹 ∈ ( 𝑁 “ { 1 } ) ) )
16 eqid ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } )
17 1 3 16 psgnghm2 ( 𝐷 ∈ Fin → 𝑁 ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) )
18 eqid ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) = ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) )
19 2 18 ghmf ( 𝑁 ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) → 𝑁 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) )
20 17 19 syl ( 𝐷 ∈ Fin → 𝑁 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) )
21 ffn ( 𝑁 : 𝑃 ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) → 𝑁 Fn 𝑃 )
22 fniniseg ( 𝑁 Fn 𝑃 → ( 𝐹 ∈ ( 𝑁 “ { 1 } ) ↔ ( 𝐹𝑃 ∧ ( 𝑁𝐹 ) = 1 ) ) )
23 20 21 22 3syl ( 𝐷 ∈ Fin → ( 𝐹 ∈ ( 𝑁 “ { 1 } ) ↔ ( 𝐹𝑃 ∧ ( 𝑁𝐹 ) = 1 ) ) )
24 15 23 bitrd ( 𝐷 ∈ Fin → ( 𝐹 ∈ ( pmEven ‘ 𝐷 ) ↔ ( 𝐹𝑃 ∧ ( 𝑁𝐹 ) = 1 ) ) )