Metamath Proof Explorer


Theorem psr1val

Description: Value of the ring of univariate power series. (Contributed by Mario Carneiro, 8-Feb-2015)

Ref Expression
Hypothesis psr1val.1 S=PwSer1R
Assertion psr1val S=1𝑜ordPwSerR

Proof

Step Hyp Ref Expression
1 psr1val.1 S=PwSer1R
2 oveq2 r=R1𝑜ordPwSerr=1𝑜ordPwSerR
3 2 fveq1d r=R1𝑜ordPwSerr=1𝑜ordPwSerR
4 df-psr1 PwSer1=rV1𝑜ordPwSerr
5 fvex 1𝑜ordPwSerRV
6 3 4 5 fvmpt RVPwSer1R=1𝑜ordPwSerR
7 0fv =
8 7 eqcomi =
9 fvprc ¬RVPwSer1R=
10 reldmopsr ReldomordPwSer
11 10 ovprc2 ¬RV1𝑜ordPwSerR=
12 11 fveq1d ¬RV1𝑜ordPwSerR=
13 8 9 12 3eqtr4a ¬RVPwSer1R=1𝑜ordPwSerR
14 6 13 pm2.61i PwSer1R=1𝑜ordPwSerR
15 1 14 eqtri S=1𝑜ordPwSerR