Metamath Proof Explorer


Theorem pthisspthorcycl

Description: A path is either a simple path or a cycle (or both). (Contributed by BTernaryTau, 20-Oct-2023)

Ref Expression
Assertion pthisspthorcycl F Paths G P F SPaths G P F Cycles G P

Proof

Step Hyp Ref Expression
1 pthdepisspth F Paths G P P 0 P F F SPaths G P
2 1 ex F Paths G P P 0 P F F SPaths G P
3 2 necon1bd F Paths G P ¬ F SPaths G P P 0 = P F
4 3 anc2li F Paths G P ¬ F SPaths G P F Paths G P P 0 = P F
5 iscycl F Cycles G P F Paths G P P 0 = P F
6 4 5 syl6ibr F Paths G P ¬ F SPaths G P F Cycles G P
7 6 orrd F Paths G P F SPaths G P F Cycles G P