Metamath Proof Explorer


Theorem pthsonfval

Description: The set of paths between two vertices (in an undirected graph). (Contributed by Alexander van der Vekens, 8-Nov-2017) (Revised by AV, 16-Jan-2021) (Revised by AV, 21-Mar-2021)

Ref Expression
Hypothesis pthsonfval.v V=VtxG
Assertion pthsonfval AVBVAPathsOnGB=fp|fATrailsOnGBpfPathsGp

Proof

Step Hyp Ref Expression
1 pthsonfval.v V=VtxG
2 1 1vgrex AVGV
3 2 adantr AVBVGV
4 simpl AVBVAV
5 4 1 eleqtrdi AVBVAVtxG
6 simpr AVBVBV
7 6 1 eleqtrdi AVBVBVtxG
8 df-pthson PathsOn=gVaVtxg,bVtxgfp|faTrailsOngbpfPathsgp
9 3 5 7 8 mptmpoopabovd AVBVAPathsOnGB=fp|fATrailsOnGBpfPathsGp