Metamath Proof Explorer


Theorem pw2f1o2val

Description: Function value of the pw2f1o2 bijection. (Contributed by Stefan O'Rear, 18-Jan-2015) (Revised by Stefan O'Rear, 6-May-2015)

Ref Expression
Hypothesis pw2f1o2.f F=x2𝑜Ax-11𝑜
Assertion pw2f1o2val X2𝑜AFX=X-11𝑜

Proof

Step Hyp Ref Expression
1 pw2f1o2.f F=x2𝑜Ax-11𝑜
2 cnvexg X2𝑜AX-1V
3 imaexg X-1VX-11𝑜V
4 2 3 syl X2𝑜AX-11𝑜V
5 cnveq x=Xx-1=X-1
6 5 imaeq1d x=Xx-11𝑜=X-11𝑜
7 6 1 fvmptg X2𝑜AX-11𝑜VFX=X-11𝑜
8 4 7 mpdan X2𝑜AFX=X-11𝑜