Metamath Proof Explorer


Theorem pwmndgplus

Description: The operation of the monoid of the power set of a class A under union. (Contributed by AV, 27-Feb-2024)

Ref Expression
Hypotheses pwmnd.b BaseM=𝒫A
pwmnd.p +M=x𝒫A,y𝒫Axy
Assertion pwmndgplus X𝒫AY𝒫AX+MY=XY

Proof

Step Hyp Ref Expression
1 pwmnd.b BaseM=𝒫A
2 pwmnd.p +M=x𝒫A,y𝒫Axy
3 2 a1i X𝒫AY𝒫A+M=x𝒫A,y𝒫Axy
4 uneq12 x=Xy=Yxy=XY
5 4 adantl X𝒫AY𝒫Ax=Xy=Yxy=XY
6 simpl X𝒫AY𝒫AX𝒫A
7 simpr X𝒫AY𝒫AY𝒫A
8 unexg X𝒫AY𝒫AXYV
9 3 5 6 7 8 ovmpod X𝒫AY𝒫AX+MY=XY