Metamath Proof Explorer


Theorem pwselbas

Description: An element of a structure power is a function from the index set to the base set of the structure. (Contributed by Mario Carneiro, 11-Jan-2015) (Revised by Mario Carneiro, 5-Jun-2015)

Ref Expression
Hypotheses pwsbas.y Y=R𝑠I
pwsbas.f B=BaseR
pwselbas.v V=BaseY
pwselbas.r φRW
pwselbas.i φIZ
pwselbas.x φXV
Assertion pwselbas φX:IB

Proof

Step Hyp Ref Expression
1 pwsbas.y Y=R𝑠I
2 pwsbas.f B=BaseR
3 pwselbas.v V=BaseY
4 pwselbas.r φRW
5 pwselbas.i φIZ
6 pwselbas.x φXV
7 1 2 3 pwselbasb RWIZXVX:IB
8 4 5 7 syl2anc φXVX:IB
9 6 8 mpbid φX:IB