Metamath Proof Explorer


Theorem qeqnumdivden

Description: Recover a rational number from its canonical representation. (Contributed by Stefan O'Rear, 13-Sep-2014)

Ref Expression
Assertion qeqnumdivden AA=numerAdenomA

Proof

Step Hyp Ref Expression
1 eqidd AnumerA=numerA
2 eqid denomA=denomA
3 1 2 jctir AnumerA=numerAdenomA=denomA
4 qnumcl AnumerA
5 qdencl AdenomA
6 qnumdenbi AnumerAdenomAnumerAgcddenomA=1A=numerAdenomAnumerA=numerAdenomA=denomA
7 4 5 6 mpd3an23 AnumerAgcddenomA=1A=numerAdenomAnumerA=numerAdenomA=denomA
8 3 7 mpbird AnumerAgcddenomA=1A=numerAdenomA
9 8 simprd AA=numerAdenomA