Metamath Proof Explorer


Theorem qexpclz

Description: Closure of integer exponentiation of rational numbers. (Contributed by Mario Carneiro, 9-Sep-2014)

Ref Expression
Assertion qexpclz AA0NAN

Proof

Step Hyp Ref Expression
1 qsscn
2 qmulcl xyxy
3 1z 1
4 zq 11
5 3 4 ax-mp 1
6 qreccl xx01x
7 1 2 5 6 expcl2lem AA0NAN