Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Properties of Hilbert subspaces
Quantum Logic Explorer axioms
qlax4i
Metamath Proof Explorer
Description: One of the equations showing CH is an ortholattice. (This
corresponds to axiom "ax-4" in the Quantum Logic Explorer.)
(Contributed by NM , 4-Aug-2004) (New usage is discouraged.)
Ref
Expression
Hypotheses
qlax.1
⊢ A ∈ C ℋ
qlax.2
⊢ B ∈ C ℋ
Assertion
qlax4i
⊢ A ∨ ℋ B ∨ ℋ ⊥ ⁡ B = B ∨ ℋ ⊥ ⁡ B
Proof
Step
Hyp
Ref
Expression
1
qlax.1
⊢ A ∈ C ℋ
2
qlax.2
⊢ B ∈ C ℋ
3
1
chj1i
⊢ A ∨ ℋ ℋ = ℋ
4
2
chjoi
⊢ B ∨ ℋ ⊥ ⁡ B = ℋ
5
4
oveq2i
⊢ A ∨ ℋ B ∨ ℋ ⊥ ⁡ B = A ∨ ℋ ℋ
6
3 5 4
3eqtr4i
⊢ A ∨ ℋ B ∨ ℋ ⊥ ⁡ B = B ∨ ℋ ⊥ ⁡ B