Metamath Proof Explorer


Theorem qsdisj

Description: Members of a quotient set do not overlap. (Contributed by Rodolfo Medina, 12-Oct-2010) (Revised by Mario Carneiro, 11-Jul-2014)

Ref Expression
Hypotheses qsdisj.1 φRErX
qsdisj.2 φBA/R
qsdisj.3 φCA/R
Assertion qsdisj φB=CBC=

Proof

Step Hyp Ref Expression
1 qsdisj.1 φRErX
2 qsdisj.2 φBA/R
3 qsdisj.3 φCA/R
4 eqid A/R=A/R
5 eqeq1 xR=BxR=CB=C
6 ineq1 xR=BxRC=BC
7 6 eqeq1d xR=BxRC=BC=
8 5 7 orbi12d xR=BxR=CxRC=B=CBC=
9 eqeq2 yR=CxR=yRxR=C
10 ineq2 yR=CxRyR=xRC
11 10 eqeq1d yR=CxRyR=xRC=
12 9 11 orbi12d yR=CxR=yRxRyR=xR=CxRC=
13 1 ad2antrr φxAyARErX
14 erdisj RErXxR=yRxRyR=
15 13 14 syl φxAyAxR=yRxRyR=
16 4 12 15 ectocld φxACA/RxR=CxRC=
17 3 16 mpidan φxAxR=CxRC=
18 4 8 17 ectocld φBA/RB=CBC=
19 2 18 mpdan φB=CBC=