Metamath Proof Explorer


Theorem qseq2

Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995)

Ref Expression
Assertion qseq2 A=BC/A=C/B

Proof

Step Hyp Ref Expression
1 eceq2 A=BxA=xB
2 1 eqeq2d A=By=xAy=xB
3 2 rexbidv A=BxCy=xAxCy=xB
4 3 abbidv A=By|xCy=xA=y|xCy=xB
5 df-qs C/A=y|xCy=xA
6 df-qs C/B=y|xCy=xB
7 4 5 6 3eqtr4g A=BC/A=C/B