Database
BASIC TOPOLOGY
Topology
Quotient maps and quotient topology
qtopcmp
Next ⟩
qtopconn
Metamath Proof Explorer
Ascii
Unicode
Theorem
qtopcmp
Description:
A quotient of a compact space is compact.
(Contributed by
Mario Carneiro
, 24-Mar-2015)
Ref
Expression
Hypothesis
qtopcmp.1
⊢
X
=
⋃
J
Assertion
qtopcmp
⊢
J
∈
Comp
∧
F
Fn
X
→
J
qTop
F
∈
Comp
Proof
Step
Hyp
Ref
Expression
1
qtopcmp.1
⊢
X
=
⋃
J
2
cmptop
⊢
J
∈
Comp
→
J
∈
Top
3
eqid
⊢
⋃
J
qTop
F
=
⋃
J
qTop
F
4
3
cncmp
⊢
J
∈
Comp
∧
F
:
X
⟶
onto
⋃
J
qTop
F
∧
F
∈
J
Cn
J
qTop
F
→
J
qTop
F
∈
Comp
5
1
2
4
qtopcmplem
⊢
J
∈
Comp
∧
F
Fn
X
→
J
qTop
F
∈
Comp