Metamath Proof Explorer


Theorem qtopcmp

Description: A quotient of a compact space is compact. (Contributed by Mario Carneiro, 24-Mar-2015)

Ref Expression
Hypothesis qtopcmp.1 X=J
Assertion qtopcmp JCompFFnXJqTopFComp

Proof

Step Hyp Ref Expression
1 qtopcmp.1 X=J
2 cmptop JCompJTop
3 eqid JqTopF=JqTopF
4 3 cncmp JCompF:XontoJqTopFFJCnJqTopFJqTopFComp
5 1 2 4 qtopcmplem JCompFFnXJqTopFComp