Metamath Proof Explorer


Theorem quseccl

Description: Closure of the quotient map for a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015) (Proof shortened by AV, 9-Mar-2025)

Ref Expression
Hypotheses qusgrp.h H=G/𝑠G~QGS
qusadd.v V=BaseG
quseccl.b B=BaseH
Assertion quseccl SNrmSGrpGXVXG~QGSB

Proof

Step Hyp Ref Expression
1 qusgrp.h H=G/𝑠G~QGS
2 qusadd.v V=BaseG
3 quseccl.b B=BaseH
4 nsgsubg SNrmSGrpGSSubGrpG
5 subgrcl SSubGrpGGGrp
6 4 5 syl SNrmSGrpGGGrp
7 eqid G~QGS=G~QGS
8 7 1 2 3 quseccl0 GGrpXVXG~QGSB
9 6 8 sylan SNrmSGrpGXVXG~QGSB