Metamath Proof Explorer


Theorem r19.41

Description: Restricted quantifier version of 19.41 . See r19.41v for a version with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 1-Nov-2010)

Ref Expression
Hypothesis r19.41.1 xψ
Assertion r19.41 xAφψxAφψ

Proof

Step Hyp Ref Expression
1 r19.41.1 xψ
2 anass xAφψxAφψ
3 2 exbii xxAφψxxAφψ
4 1 19.41 xxAφψxxAφψ
5 3 4 bitr3i xxAφψxxAφψ
6 df-rex xAφψxxAφψ
7 df-rex xAφxxAφ
8 7 anbi1i xAφψxxAφψ
9 5 6 8 3bitr4i xAφψxAφψ