Metamath Proof Explorer


Theorem r19.41

Description: Restricted quantifier version of 19.41 . See r19.41v for a version with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 1-Nov-2010)

Ref Expression
Hypothesis r19.41.1 x ψ
Assertion r19.41 x A φ ψ x A φ ψ

Proof

Step Hyp Ref Expression
1 r19.41.1 x ψ
2 df-rex x A φ ψ x x A φ ψ
3 anass x A φ ψ x A φ ψ
4 3 exbii x x A φ ψ x x A φ ψ
5 1 19.41 x x A φ ψ x x A φ ψ
6 df-rex x A φ x x A φ
7 6 bicomi x x A φ x A φ
8 5 7 bianbi x x A φ ψ x A φ ψ
9 2 4 8 3bitr2i x A φ ψ x A φ ψ