Metamath Proof Explorer


Theorem r19.43

Description: Restricted quantifier version of 19.43 . (Contributed by NM, 27-May-1998) (Proof shortened by Andrew Salmon, 30-May-2011)

Ref Expression
Assertion r19.43 xAφψxAφxAψ

Proof

Step Hyp Ref Expression
1 r19.35 xA¬φψxA¬φxAψ
2 df-or φψ¬φψ
3 2 rexbii xAφψxA¬φψ
4 df-or xAφxAψ¬xAφxAψ
5 ralnex xA¬φ¬xAφ
6 5 imbi1i xA¬φxAψ¬xAφxAψ
7 4 6 bitr4i xAφxAψxA¬φxAψ
8 1 3 7 3bitr4i xAφψxAφxAψ