Metamath Proof Explorer


Theorem r1elssi

Description: The range of the R1 function is transitive. Lemma 2.10 of Kunen p. 97. One direction of r1elss that doesn't need A to be a set. (Contributed by Mario Carneiro, 22-Mar-2013) (Revised by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion r1elssi AR1OnAR1On

Proof

Step Hyp Ref Expression
1 triun xOnTrR1xTrxOnR1x
2 r1tr TrR1x
3 2 a1i xOnTrR1x
4 1 3 mprg TrxOnR1x
5 r1funlim FunR1LimdomR1
6 5 simpli FunR1
7 funiunfv FunR1xOnR1x=R1On
8 6 7 ax-mp xOnR1x=R1On
9 treq xOnR1x=R1OnTrxOnR1xTrR1On
10 8 9 ax-mp TrxOnR1xTrR1On
11 4 10 mpbi TrR1On
12 trss TrR1OnAR1OnAR1On
13 11 12 ax-mp AR1OnAR1On