Metamath Proof Explorer


Theorem raaan

Description: Rearrange restricted quantifiers. (Contributed by NM, 26-Oct-2010)

Ref Expression
Hypotheses raaan.1 yφ
raaan.2 xψ
Assertion raaan xAyAφψxAφyAψ

Proof

Step Hyp Ref Expression
1 raaan.1 yφ
2 raaan.2 xψ
3 rzal A=xAyAφψ
4 rzal A=xAφ
5 rzal A=yAψ
6 pm5.1 xAyAφψxAφyAψxAyAφψxAφyAψ
7 3 4 5 6 syl12anc A=xAyAφψxAφyAψ
8 1 r19.28z AyAφψφyAψ
9 8 ralbidv AxAyAφψxAφyAψ
10 nfcv _xA
11 10 2 nfralw xyAψ
12 11 r19.27z AxAφyAψxAφyAψ
13 9 12 bitrd AxAyAφψxAφyAψ
14 7 13 pm2.61ine xAyAφψxAφyAψ