Metamath Proof Explorer


Theorem rabbidaOLD

Description: Obsolete version of rabbida as of 14-Mar-2025. (Contributed by BJ, 27-Apr-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses rabbidaOLD.n xφ
rabbidaOLD.1 φxAψχ
Assertion rabbidaOLD φxA|ψ=xA|χ

Proof

Step Hyp Ref Expression
1 rabbidaOLD.n xφ
2 rabbidaOLD.1 φxAψχ
3 2 ex φxAψχ
4 1 3 ralrimi φxAψχ
5 rabbi xAψχxA|ψ=xA|χ
6 4 5 sylib φxA|ψ=xA|χ