Metamath Proof Explorer


Theorem rabeqiOLD

Description: Obsolete version of rabeqi as of 3-Jun-2024. (Contributed by Glauco Siliprandi, 26-Jun-2021) Avoid ax-10 and ax-11 . (Revised by Gino Giotto, 20-Aug-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis rabeqiOLD.1 A=B
Assertion rabeqiOLD xA|φ=xB|φ

Proof

Step Hyp Ref Expression
1 rabeqiOLD.1 A=B
2 1 nfth xA=B
3 eleq2 A=BxAxB
4 3 anbi1d A=BxAφxBφ
5 2 4 abbid A=Bx|xAφ=x|xBφ
6 df-rab xA|φ=x|xAφ
7 df-rab xB|φ=x|xBφ
8 5 6 7 3eqtr4g A=BxA|φ=xB|φ
9 1 8 ax-mp xA|φ=xB|φ