Metamath Proof Explorer


Theorem rabdiophlem1

Description: Lemma for arithmetic diophantine sets. Convert polynomial-ness of an expression into a constraint suitable for ralimi . (Contributed by Stefan O'Rear, 10-Oct-2014)

Ref Expression
Assertion rabdiophlem1 t 1 N A mzPoly 1 N t 0 1 N A

Proof

Step Hyp Ref Expression
1 zex V
2 nn0ssz 0
3 mapss V 0 0 1 N 1 N
4 1 2 3 mp2an 0 1 N 1 N
5 mzpf t 1 N A mzPoly 1 N t 1 N A : 1 N
6 eqid t 1 N A = t 1 N A
7 6 fmpt t 1 N A t 1 N A : 1 N
8 5 7 sylibr t 1 N A mzPoly 1 N t 1 N A
9 ssralv 0 1 N 1 N t 1 N A t 0 1 N A
10 4 8 9 mpsyl t 1 N A mzPoly 1 N t 0 1 N A