Metamath Proof Explorer


Theorem rabdiophlem2

Description: Lemma for arithmetic diophantine sets. Reuse a polynomial expression under a new quantifier. (Contributed by Stefan O'Rear, 10-Oct-2014)

Ref Expression
Hypothesis rabdiophlem2.1 M=N+1
Assertion rabdiophlem2 N0u1NAmzPoly1Nt1Mt1N/uAmzPoly1M

Proof

Step Hyp Ref Expression
1 rabdiophlem2.1 M=N+1
2 nfcv _aA
3 nfcsb1v _ua/uA
4 csbeq1a u=aA=a/uA
5 2 3 4 cbvmpt u1NA=a1Na/uA
6 5 fveq1i u1NAt1N=a1Na/uAt1N
7 eqid a1Na/uA=a1Na/uA
8 csbeq1 a=t1Na/uA=t1N/uA
9 1 mapfzcons1cl t1Mt1N1N
10 9 adantl N0u1NAmzPoly1Nt1Mt1N1N
11 mzpf u1NAmzPoly1Nu1NA:1N
12 eqid u1NA=u1NA
13 12 fmpt u1NAu1NA:1N
14 11 13 sylibr u1NAmzPoly1Nu1NA
15 14 ad2antlr N0u1NAmzPoly1Nt1Mu1NA
16 nfcsb1v _ut1N/uA
17 16 nfel1 ut1N/uA
18 csbeq1a u=t1NA=t1N/uA
19 18 eleq1d u=t1NAt1N/uA
20 17 19 rspc t1N1Nu1NAt1N/uA
21 10 15 20 sylc N0u1NAmzPoly1Nt1Mt1N/uA
22 7 8 10 21 fvmptd3 N0u1NAmzPoly1Nt1Ma1Na/uAt1N=t1N/uA
23 6 22 eqtr2id N0u1NAmzPoly1Nt1Mt1N/uA=u1NAt1N
24 23 mpteq2dva N0u1NAmzPoly1Nt1Mt1N/uA=t1Mu1NAt1N
25 ovexd N0u1NAmzPoly1N1MV
26 fzssp1 1N1N+1
27 1 oveq2i 1M=1N+1
28 26 27 sseqtrri 1N1M
29 28 a1i N0u1NAmzPoly1N1N1M
30 simpr N0u1NAmzPoly1Nu1NAmzPoly1N
31 mzpresrename 1MV1N1Mu1NAmzPoly1Nt1Mu1NAt1NmzPoly1M
32 25 29 30 31 syl3anc N0u1NAmzPoly1Nt1Mu1NAt1NmzPoly1M
33 24 32 eqeltrd N0u1NAmzPoly1Nt1Mt1N/uAmzPoly1M