Description: Lemma for arithmetic diophantine sets. Reuse a polynomial expression under a new quantifier. (Contributed by Stefan O'Rear, 10-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rabdiophlem2.1 | |
|
Assertion | rabdiophlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabdiophlem2.1 | |
|
2 | nfcv | |
|
3 | nfcsb1v | |
|
4 | csbeq1a | |
|
5 | 2 3 4 | cbvmpt | |
6 | 5 | fveq1i | |
7 | eqid | |
|
8 | csbeq1 | |
|
9 | 1 | mapfzcons1cl | |
10 | 9 | adantl | |
11 | mzpf | |
|
12 | eqid | |
|
13 | 12 | fmpt | |
14 | 11 13 | sylibr | |
15 | 14 | ad2antlr | |
16 | nfcsb1v | |
|
17 | 16 | nfel1 | |
18 | csbeq1a | |
|
19 | 18 | eleq1d | |
20 | 17 19 | rspc | |
21 | 10 15 20 | sylc | |
22 | 7 8 10 21 | fvmptd3 | |
23 | 6 22 | eqtr2id | |
24 | 23 | mpteq2dva | |
25 | ovexd | |
|
26 | fzssp1 | |
|
27 | 1 | oveq2i | |
28 | 26 27 | sseqtrri | |
29 | 28 | a1i | |
30 | simpr | |
|
31 | mzpresrename | |
|
32 | 25 29 30 31 | syl3anc | |
33 | 24 32 | eqeltrd | |