Metamath Proof Explorer


Theorem rabdiophlem2

Description: Lemma for arithmetic diophantine sets. Reuse a polynomial expression under a new quantifier. (Contributed by Stefan O'Rear, 10-Oct-2014)

Ref Expression
Hypothesis rabdiophlem2.1 M = N + 1
Assertion rabdiophlem2 N 0 u 1 N A mzPoly 1 N t 1 M t 1 N / u A mzPoly 1 M

Proof

Step Hyp Ref Expression
1 rabdiophlem2.1 M = N + 1
2 nfcv _ a A
3 nfcsb1v _ u a / u A
4 csbeq1a u = a A = a / u A
5 2 3 4 cbvmpt u 1 N A = a 1 N a / u A
6 5 fveq1i u 1 N A t 1 N = a 1 N a / u A t 1 N
7 eqid a 1 N a / u A = a 1 N a / u A
8 csbeq1 a = t 1 N a / u A = t 1 N / u A
9 1 mapfzcons1cl t 1 M t 1 N 1 N
10 9 adantl N 0 u 1 N A mzPoly 1 N t 1 M t 1 N 1 N
11 mzpf u 1 N A mzPoly 1 N u 1 N A : 1 N
12 eqid u 1 N A = u 1 N A
13 12 fmpt u 1 N A u 1 N A : 1 N
14 11 13 sylibr u 1 N A mzPoly 1 N u 1 N A
15 14 ad2antlr N 0 u 1 N A mzPoly 1 N t 1 M u 1 N A
16 nfcsb1v _ u t 1 N / u A
17 16 nfel1 u t 1 N / u A
18 csbeq1a u = t 1 N A = t 1 N / u A
19 18 eleq1d u = t 1 N A t 1 N / u A
20 17 19 rspc t 1 N 1 N u 1 N A t 1 N / u A
21 10 15 20 sylc N 0 u 1 N A mzPoly 1 N t 1 M t 1 N / u A
22 7 8 10 21 fvmptd3 N 0 u 1 N A mzPoly 1 N t 1 M a 1 N a / u A t 1 N = t 1 N / u A
23 6 22 eqtr2id N 0 u 1 N A mzPoly 1 N t 1 M t 1 N / u A = u 1 N A t 1 N
24 23 mpteq2dva N 0 u 1 N A mzPoly 1 N t 1 M t 1 N / u A = t 1 M u 1 N A t 1 N
25 ovexd N 0 u 1 N A mzPoly 1 N 1 M V
26 fzssp1 1 N 1 N + 1
27 1 oveq2i 1 M = 1 N + 1
28 26 27 sseqtrri 1 N 1 M
29 28 a1i N 0 u 1 N A mzPoly 1 N 1 N 1 M
30 simpr N 0 u 1 N A mzPoly 1 N u 1 N A mzPoly 1 N
31 mzpresrename 1 M V 1 N 1 M u 1 N A mzPoly 1 N t 1 M u 1 N A t 1 N mzPoly 1 M
32 25 29 30 31 syl3anc N 0 u 1 N A mzPoly 1 N t 1 M u 1 N A t 1 N mzPoly 1 M
33 24 32 eqeltrd N 0 u 1 N A mzPoly 1 N t 1 M t 1 N / u A mzPoly 1 M