Metamath Proof Explorer


Theorem mzpresrename

Description: A polynomial is a polynomial over all larger index sets. (Contributed by Stefan O'Rear, 5-Oct-2014) (Revised by Stefan O'Rear, 5-Jun-2015)

Ref Expression
Assertion mzpresrename WVVWFmzPolyVxWFxVmzPolyW

Proof

Step Hyp Ref Expression
1 coires1 xIV=xV
2 1 fveq2i FxIV=FxV
3 2 mpteq2i xWFxIV=xWFxV
4 simp1 WVVWFmzPolyVWV
5 simp3 WVVWFmzPolyVFmzPolyV
6 f1oi IV:V1-1 ontoV
7 f1of IV:V1-1 ontoVIV:VV
8 6 7 ax-mp IV:VV
9 fss IV:VVVWIV:VW
10 8 9 mpan VWIV:VW
11 10 3ad2ant2 WVVWFmzPolyVIV:VW
12 mzprename WVFmzPolyVIV:VWxWFxIVmzPolyW
13 4 5 11 12 syl3anc WVVWFmzPolyVxWFxIVmzPolyW
14 3 13 eqeltrrid WVVWFmzPolyVxWFxVmzPolyW