| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coires1 |
⊢ ( 𝑥 ∘ ( I ↾ 𝑉 ) ) = ( 𝑥 ↾ 𝑉 ) |
| 2 |
1
|
fveq2i |
⊢ ( 𝐹 ‘ ( 𝑥 ∘ ( I ↾ 𝑉 ) ) ) = ( 𝐹 ‘ ( 𝑥 ↾ 𝑉 ) ) |
| 3 |
2
|
mpteq2i |
⊢ ( 𝑥 ∈ ( ℤ ↑m 𝑊 ) ↦ ( 𝐹 ‘ ( 𝑥 ∘ ( I ↾ 𝑉 ) ) ) ) = ( 𝑥 ∈ ( ℤ ↑m 𝑊 ) ↦ ( 𝐹 ‘ ( 𝑥 ↾ 𝑉 ) ) ) |
| 4 |
|
simp1 |
⊢ ( ( 𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ ( mzPoly ‘ 𝑉 ) ) → 𝑊 ∈ V ) |
| 5 |
|
simp3 |
⊢ ( ( 𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ ( mzPoly ‘ 𝑉 ) ) → 𝐹 ∈ ( mzPoly ‘ 𝑉 ) ) |
| 6 |
|
f1oi |
⊢ ( I ↾ 𝑉 ) : 𝑉 –1-1-onto→ 𝑉 |
| 7 |
|
f1of |
⊢ ( ( I ↾ 𝑉 ) : 𝑉 –1-1-onto→ 𝑉 → ( I ↾ 𝑉 ) : 𝑉 ⟶ 𝑉 ) |
| 8 |
6 7
|
ax-mp |
⊢ ( I ↾ 𝑉 ) : 𝑉 ⟶ 𝑉 |
| 9 |
|
fss |
⊢ ( ( ( I ↾ 𝑉 ) : 𝑉 ⟶ 𝑉 ∧ 𝑉 ⊆ 𝑊 ) → ( I ↾ 𝑉 ) : 𝑉 ⟶ 𝑊 ) |
| 10 |
8 9
|
mpan |
⊢ ( 𝑉 ⊆ 𝑊 → ( I ↾ 𝑉 ) : 𝑉 ⟶ 𝑊 ) |
| 11 |
10
|
3ad2ant2 |
⊢ ( ( 𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ ( mzPoly ‘ 𝑉 ) ) → ( I ↾ 𝑉 ) : 𝑉 ⟶ 𝑊 ) |
| 12 |
|
mzprename |
⊢ ( ( 𝑊 ∈ V ∧ 𝐹 ∈ ( mzPoly ‘ 𝑉 ) ∧ ( I ↾ 𝑉 ) : 𝑉 ⟶ 𝑊 ) → ( 𝑥 ∈ ( ℤ ↑m 𝑊 ) ↦ ( 𝐹 ‘ ( 𝑥 ∘ ( I ↾ 𝑉 ) ) ) ) ∈ ( mzPoly ‘ 𝑊 ) ) |
| 13 |
4 5 11 12
|
syl3anc |
⊢ ( ( 𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ ( mzPoly ‘ 𝑉 ) ) → ( 𝑥 ∈ ( ℤ ↑m 𝑊 ) ↦ ( 𝐹 ‘ ( 𝑥 ∘ ( I ↾ 𝑉 ) ) ) ) ∈ ( mzPoly ‘ 𝑊 ) ) |
| 14 |
3 13
|
eqeltrrid |
⊢ ( ( 𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ ( mzPoly ‘ 𝑉 ) ) → ( 𝑥 ∈ ( ℤ ↑m 𝑊 ) ↦ ( 𝐹 ‘ ( 𝑥 ↾ 𝑉 ) ) ) ∈ ( mzPoly ‘ 𝑊 ) ) |