Step |
Hyp |
Ref |
Expression |
1 |
|
mzpcompact2lem.i |
⊢ 𝐵 ∈ V |
2 |
|
tru |
⊢ ⊤ |
3 |
|
0fin |
⊢ ∅ ∈ Fin |
4 |
|
0ex |
⊢ ∅ ∈ V |
5 |
|
mzpconst |
⊢ ( ( ∅ ∈ V ∧ 𝑓 ∈ ℤ ) → ( ( ℤ ↑m ∅ ) × { 𝑓 } ) ∈ ( mzPoly ‘ ∅ ) ) |
6 |
4 5
|
mpan |
⊢ ( 𝑓 ∈ ℤ → ( ( ℤ ↑m ∅ ) × { 𝑓 } ) ∈ ( mzPoly ‘ ∅ ) ) |
7 |
|
0ss |
⊢ ∅ ⊆ 𝐵 |
8 |
7
|
a1i |
⊢ ( 𝑓 ∈ ℤ → ∅ ⊆ 𝐵 ) |
9 |
|
fconstmpt |
⊢ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ 𝑓 ) |
10 |
|
simpr |
⊢ ( ( 𝑓 ∈ ℤ ∧ 𝑑 ∈ ( ℤ ↑m 𝐵 ) ) → 𝑑 ∈ ( ℤ ↑m 𝐵 ) ) |
11 |
|
elmapssres |
⊢ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ∧ ∅ ⊆ 𝐵 ) → ( 𝑑 ↾ ∅ ) ∈ ( ℤ ↑m ∅ ) ) |
12 |
10 7 11
|
sylancl |
⊢ ( ( 𝑓 ∈ ℤ ∧ 𝑑 ∈ ( ℤ ↑m 𝐵 ) ) → ( 𝑑 ↾ ∅ ) ∈ ( ℤ ↑m ∅ ) ) |
13 |
|
vex |
⊢ 𝑓 ∈ V |
14 |
13
|
fvconst2 |
⊢ ( ( 𝑑 ↾ ∅ ) ∈ ( ℤ ↑m ∅ ) → ( ( ( ℤ ↑m ∅ ) × { 𝑓 } ) ‘ ( 𝑑 ↾ ∅ ) ) = 𝑓 ) |
15 |
12 14
|
syl |
⊢ ( ( 𝑓 ∈ ℤ ∧ 𝑑 ∈ ( ℤ ↑m 𝐵 ) ) → ( ( ( ℤ ↑m ∅ ) × { 𝑓 } ) ‘ ( 𝑑 ↾ ∅ ) ) = 𝑓 ) |
16 |
15
|
mpteq2dva |
⊢ ( 𝑓 ∈ ℤ → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( ( ℤ ↑m ∅ ) × { 𝑓 } ) ‘ ( 𝑑 ↾ ∅ ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ 𝑓 ) ) |
17 |
9 16
|
eqtr4id |
⊢ ( 𝑓 ∈ ℤ → ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( ( ℤ ↑m ∅ ) × { 𝑓 } ) ‘ ( 𝑑 ↾ ∅ ) ) ) ) |
18 |
|
fveq1 |
⊢ ( 𝑏 = ( ( ℤ ↑m ∅ ) × { 𝑓 } ) → ( 𝑏 ‘ ( 𝑑 ↾ ∅ ) ) = ( ( ( ℤ ↑m ∅ ) × { 𝑓 } ) ‘ ( 𝑑 ↾ ∅ ) ) ) |
19 |
18
|
mpteq2dv |
⊢ ( 𝑏 = ( ( ℤ ↑m ∅ ) × { 𝑓 } ) → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ∅ ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( ( ℤ ↑m ∅ ) × { 𝑓 } ) ‘ ( 𝑑 ↾ ∅ ) ) ) ) |
20 |
19
|
eqeq2d |
⊢ ( 𝑏 = ( ( ℤ ↑m ∅ ) × { 𝑓 } ) → ( ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ∅ ) ) ) ↔ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( ( ℤ ↑m ∅ ) × { 𝑓 } ) ‘ ( 𝑑 ↾ ∅ ) ) ) ) ) |
21 |
20
|
anbi2d |
⊢ ( 𝑏 = ( ( ℤ ↑m ∅ ) × { 𝑓 } ) → ( ( ∅ ⊆ 𝐵 ∧ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ∅ ) ) ) ) ↔ ( ∅ ⊆ 𝐵 ∧ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( ( ℤ ↑m ∅ ) × { 𝑓 } ) ‘ ( 𝑑 ↾ ∅ ) ) ) ) ) ) |
22 |
21
|
rspcev |
⊢ ( ( ( ( ℤ ↑m ∅ ) × { 𝑓 } ) ∈ ( mzPoly ‘ ∅ ) ∧ ( ∅ ⊆ 𝐵 ∧ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( ( ℤ ↑m ∅ ) × { 𝑓 } ) ‘ ( 𝑑 ↾ ∅ ) ) ) ) ) → ∃ 𝑏 ∈ ( mzPoly ‘ ∅ ) ( ∅ ⊆ 𝐵 ∧ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ∅ ) ) ) ) ) |
23 |
6 8 17 22
|
syl12anc |
⊢ ( 𝑓 ∈ ℤ → ∃ 𝑏 ∈ ( mzPoly ‘ ∅ ) ( ∅ ⊆ 𝐵 ∧ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ∅ ) ) ) ) ) |
24 |
|
fveq2 |
⊢ ( 𝑎 = ∅ → ( mzPoly ‘ 𝑎 ) = ( mzPoly ‘ ∅ ) ) |
25 |
|
sseq1 |
⊢ ( 𝑎 = ∅ → ( 𝑎 ⊆ 𝐵 ↔ ∅ ⊆ 𝐵 ) ) |
26 |
|
reseq2 |
⊢ ( 𝑎 = ∅ → ( 𝑑 ↾ 𝑎 ) = ( 𝑑 ↾ ∅ ) ) |
27 |
26
|
fveq2d |
⊢ ( 𝑎 = ∅ → ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) = ( 𝑏 ‘ ( 𝑑 ↾ ∅ ) ) ) |
28 |
27
|
mpteq2dv |
⊢ ( 𝑎 = ∅ → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ∅ ) ) ) ) |
29 |
28
|
eqeq2d |
⊢ ( 𝑎 = ∅ → ( ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ↔ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ∅ ) ) ) ) ) |
30 |
25 29
|
anbi12d |
⊢ ( 𝑎 = ∅ → ( ( 𝑎 ⊆ 𝐵 ∧ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ( ∅ ⊆ 𝐵 ∧ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ∅ ) ) ) ) ) ) |
31 |
24 30
|
rexeqbidv |
⊢ ( 𝑎 = ∅ → ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑏 ∈ ( mzPoly ‘ ∅ ) ( ∅ ⊆ 𝐵 ∧ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ∅ ) ) ) ) ) ) |
32 |
31
|
rspcev |
⊢ ( ( ∅ ∈ Fin ∧ ∃ 𝑏 ∈ ( mzPoly ‘ ∅ ) ( ∅ ⊆ 𝐵 ∧ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ∅ ) ) ) ) ) → ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
33 |
3 23 32
|
sylancr |
⊢ ( 𝑓 ∈ ℤ → ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
34 |
33
|
adantl |
⊢ ( ( ⊤ ∧ 𝑓 ∈ ℤ ) → ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
35 |
|
snfi |
⊢ { 𝑓 } ∈ Fin |
36 |
|
snex |
⊢ { 𝑓 } ∈ V |
37 |
|
vsnid |
⊢ 𝑓 ∈ { 𝑓 } |
38 |
|
mzpproj |
⊢ ( ( { 𝑓 } ∈ V ∧ 𝑓 ∈ { 𝑓 } ) → ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) ∈ ( mzPoly ‘ { 𝑓 } ) ) |
39 |
36 37 38
|
mp2an |
⊢ ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) ∈ ( mzPoly ‘ { 𝑓 } ) |
40 |
39
|
a1i |
⊢ ( 𝑓 ∈ 𝐵 → ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) ∈ ( mzPoly ‘ { 𝑓 } ) ) |
41 |
|
snssi |
⊢ ( 𝑓 ∈ 𝐵 → { 𝑓 } ⊆ 𝐵 ) |
42 |
|
fveq1 |
⊢ ( 𝑔 = 𝑑 → ( 𝑔 ‘ 𝑓 ) = ( 𝑑 ‘ 𝑓 ) ) |
43 |
42
|
cbvmptv |
⊢ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑑 ‘ 𝑓 ) ) |
44 |
|
simpr |
⊢ ( ( 𝑓 ∈ 𝐵 ∧ 𝑑 ∈ ( ℤ ↑m 𝐵 ) ) → 𝑑 ∈ ( ℤ ↑m 𝐵 ) ) |
45 |
|
simpl |
⊢ ( ( 𝑓 ∈ 𝐵 ∧ 𝑑 ∈ ( ℤ ↑m 𝐵 ) ) → 𝑓 ∈ 𝐵 ) |
46 |
45
|
snssd |
⊢ ( ( 𝑓 ∈ 𝐵 ∧ 𝑑 ∈ ( ℤ ↑m 𝐵 ) ) → { 𝑓 } ⊆ 𝐵 ) |
47 |
|
elmapssres |
⊢ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ∧ { 𝑓 } ⊆ 𝐵 ) → ( 𝑑 ↾ { 𝑓 } ) ∈ ( ℤ ↑m { 𝑓 } ) ) |
48 |
44 46 47
|
syl2anc |
⊢ ( ( 𝑓 ∈ 𝐵 ∧ 𝑑 ∈ ( ℤ ↑m 𝐵 ) ) → ( 𝑑 ↾ { 𝑓 } ) ∈ ( ℤ ↑m { 𝑓 } ) ) |
49 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝑑 ↾ { 𝑓 } ) → ( 𝑔 ‘ 𝑓 ) = ( ( 𝑑 ↾ { 𝑓 } ) ‘ 𝑓 ) ) |
50 |
|
eqid |
⊢ ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) |
51 |
|
fvex |
⊢ ( ( 𝑑 ↾ { 𝑓 } ) ‘ 𝑓 ) ∈ V |
52 |
49 50 51
|
fvmpt |
⊢ ( ( 𝑑 ↾ { 𝑓 } ) ∈ ( ℤ ↑m { 𝑓 } ) → ( ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) ‘ ( 𝑑 ↾ { 𝑓 } ) ) = ( ( 𝑑 ↾ { 𝑓 } ) ‘ 𝑓 ) ) |
53 |
48 52
|
syl |
⊢ ( ( 𝑓 ∈ 𝐵 ∧ 𝑑 ∈ ( ℤ ↑m 𝐵 ) ) → ( ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) ‘ ( 𝑑 ↾ { 𝑓 } ) ) = ( ( 𝑑 ↾ { 𝑓 } ) ‘ 𝑓 ) ) |
54 |
|
fvres |
⊢ ( 𝑓 ∈ { 𝑓 } → ( ( 𝑑 ↾ { 𝑓 } ) ‘ 𝑓 ) = ( 𝑑 ‘ 𝑓 ) ) |
55 |
37 54
|
ax-mp |
⊢ ( ( 𝑑 ↾ { 𝑓 } ) ‘ 𝑓 ) = ( 𝑑 ‘ 𝑓 ) |
56 |
53 55
|
eqtr2di |
⊢ ( ( 𝑓 ∈ 𝐵 ∧ 𝑑 ∈ ( ℤ ↑m 𝐵 ) ) → ( 𝑑 ‘ 𝑓 ) = ( ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) |
57 |
56
|
mpteq2dva |
⊢ ( 𝑓 ∈ 𝐵 → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑑 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) ) |
58 |
43 57
|
eqtrid |
⊢ ( 𝑓 ∈ 𝐵 → ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) ) |
59 |
|
fveq1 |
⊢ ( 𝑏 = ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) → ( 𝑏 ‘ ( 𝑑 ↾ { 𝑓 } ) ) = ( ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) |
60 |
59
|
mpteq2dv |
⊢ ( 𝑏 = ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) ) |
61 |
60
|
eqeq2d |
⊢ ( 𝑏 = ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) → ( ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) ↔ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) ) ) |
62 |
61
|
anbi2d |
⊢ ( 𝑏 = ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) → ( ( { 𝑓 } ⊆ 𝐵 ∧ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) ) ↔ ( { 𝑓 } ⊆ 𝐵 ∧ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) ) ) ) |
63 |
62
|
rspcev |
⊢ ( ( ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) ∈ ( mzPoly ‘ { 𝑓 } ) ∧ ( { 𝑓 } ⊆ 𝐵 ∧ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) ) ) → ∃ 𝑏 ∈ ( mzPoly ‘ { 𝑓 } ) ( { 𝑓 } ⊆ 𝐵 ∧ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) ) ) |
64 |
40 41 58 63
|
syl12anc |
⊢ ( 𝑓 ∈ 𝐵 → ∃ 𝑏 ∈ ( mzPoly ‘ { 𝑓 } ) ( { 𝑓 } ⊆ 𝐵 ∧ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) ) ) |
65 |
|
fveq2 |
⊢ ( 𝑎 = { 𝑓 } → ( mzPoly ‘ 𝑎 ) = ( mzPoly ‘ { 𝑓 } ) ) |
66 |
|
sseq1 |
⊢ ( 𝑎 = { 𝑓 } → ( 𝑎 ⊆ 𝐵 ↔ { 𝑓 } ⊆ 𝐵 ) ) |
67 |
|
reseq2 |
⊢ ( 𝑎 = { 𝑓 } → ( 𝑑 ↾ 𝑎 ) = ( 𝑑 ↾ { 𝑓 } ) ) |
68 |
67
|
fveq2d |
⊢ ( 𝑎 = { 𝑓 } → ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) = ( 𝑏 ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) |
69 |
68
|
mpteq2dv |
⊢ ( 𝑎 = { 𝑓 } → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) ) |
70 |
69
|
eqeq2d |
⊢ ( 𝑎 = { 𝑓 } → ( ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ↔ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) ) ) |
71 |
66 70
|
anbi12d |
⊢ ( 𝑎 = { 𝑓 } → ( ( 𝑎 ⊆ 𝐵 ∧ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ( { 𝑓 } ⊆ 𝐵 ∧ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) ) ) ) |
72 |
65 71
|
rexeqbidv |
⊢ ( 𝑎 = { 𝑓 } → ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑏 ∈ ( mzPoly ‘ { 𝑓 } ) ( { 𝑓 } ⊆ 𝐵 ∧ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) ) ) ) |
73 |
72
|
rspcev |
⊢ ( ( { 𝑓 } ∈ Fin ∧ ∃ 𝑏 ∈ ( mzPoly ‘ { 𝑓 } ) ( { 𝑓 } ⊆ 𝐵 ∧ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) ) ) → ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
74 |
35 64 73
|
sylancr |
⊢ ( 𝑓 ∈ 𝐵 → ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
75 |
74
|
adantl |
⊢ ( ( ⊤ ∧ 𝑓 ∈ 𝐵 ) → ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
76 |
|
simplll |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ℎ ∈ Fin ) |
77 |
|
simprll |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → 𝑗 ∈ Fin ) |
78 |
|
unfi |
⊢ ( ( ℎ ∈ Fin ∧ 𝑗 ∈ Fin ) → ( ℎ ∪ 𝑗 ) ∈ Fin ) |
79 |
76 77 78
|
syl2anc |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ( ℎ ∪ 𝑗 ) ∈ Fin ) |
80 |
|
vex |
⊢ ℎ ∈ V |
81 |
|
vex |
⊢ 𝑗 ∈ V |
82 |
80 81
|
unex |
⊢ ( ℎ ∪ 𝑗 ) ∈ V |
83 |
82
|
a1i |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ( ℎ ∪ 𝑗 ) ∈ V ) |
84 |
|
ssun1 |
⊢ ℎ ⊆ ( ℎ ∪ 𝑗 ) |
85 |
84
|
a1i |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ℎ ⊆ ( ℎ ∪ 𝑗 ) ) |
86 |
|
simpllr |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → 𝑖 ∈ ( mzPoly ‘ ℎ ) ) |
87 |
|
mzpresrename |
⊢ ( ( ( ℎ ∪ 𝑗 ) ∈ V ∧ ℎ ⊆ ( ℎ ∪ 𝑗 ) ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) → ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) ) ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ) |
88 |
83 85 86 87
|
syl3anc |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) ) ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ) |
89 |
|
ssun2 |
⊢ 𝑗 ⊆ ( ℎ ∪ 𝑗 ) |
90 |
89
|
a1i |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → 𝑗 ⊆ ( ℎ ∪ 𝑗 ) ) |
91 |
|
simprlr |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) |
92 |
|
mzpresrename |
⊢ ( ( ( ℎ ∪ 𝑗 ) ∈ V ∧ 𝑗 ⊆ ( ℎ ∪ 𝑗 ) ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) → ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ) |
93 |
83 90 91 92
|
syl3anc |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ) |
94 |
|
mzpaddmpt |
⊢ ( ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) ) ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ∧ ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ) → ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ) |
95 |
88 93 94
|
syl2anc |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ) |
96 |
|
simplr |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ℎ ⊆ 𝐵 ) |
97 |
|
simprr |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → 𝑗 ⊆ 𝐵 ) |
98 |
96 97
|
unssd |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ) |
99 |
|
ovex |
⊢ ( ℤ ↑m 𝐵 ) ∈ V |
100 |
99
|
a1i |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ( ℤ ↑m 𝐵 ) ∈ V ) |
101 |
1
|
a1i |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → 𝐵 ∈ V ) |
102 |
|
mzpresrename |
⊢ ( ( 𝐵 ∈ V ∧ ℎ ⊆ 𝐵 ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∈ ( mzPoly ‘ 𝐵 ) ) |
103 |
101 96 86 102
|
syl3anc |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∈ ( mzPoly ‘ 𝐵 ) ) |
104 |
|
mzpf |
⊢ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∈ ( mzPoly ‘ 𝐵 ) → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) : ( ℤ ↑m 𝐵 ) ⟶ ℤ ) |
105 |
|
ffn |
⊢ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) : ( ℤ ↑m 𝐵 ) ⟶ ℤ → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) Fn ( ℤ ↑m 𝐵 ) ) |
106 |
103 104 105
|
3syl |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) Fn ( ℤ ↑m 𝐵 ) ) |
107 |
|
mzpresrename |
⊢ ( ( 𝐵 ∈ V ∧ 𝑗 ⊆ 𝐵 ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ∈ ( mzPoly ‘ 𝐵 ) ) |
108 |
101 97 91 107
|
syl3anc |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ∈ ( mzPoly ‘ 𝐵 ) ) |
109 |
|
mzpf |
⊢ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ∈ ( mzPoly ‘ 𝐵 ) → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) : ( ℤ ↑m 𝐵 ) ⟶ ℤ ) |
110 |
|
ffn |
⊢ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) : ( ℤ ↑m 𝐵 ) ⟶ ℤ → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) Fn ( ℤ ↑m 𝐵 ) ) |
111 |
108 109 110
|
3syl |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) Fn ( ℤ ↑m 𝐵 ) ) |
112 |
|
ofmpteq |
⊢ ( ( ( ℤ ↑m 𝐵 ) ∈ V ∧ ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) Fn ( ℤ ↑m 𝐵 ) ∧ ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) Fn ( ℤ ↑m 𝐵 ) ) → ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) |
113 |
100 106 111 112
|
syl3anc |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) |
114 |
|
elmapi |
⊢ ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) → 𝑑 : 𝐵 ⟶ ℤ ) |
115 |
|
fssres |
⊢ ( ( 𝑑 : 𝐵 ⟶ ℤ ∧ ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ) → ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) : ( ℎ ∪ 𝑗 ) ⟶ ℤ ) |
116 |
114 98 115
|
syl2anr |
⊢ ( ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) ∧ 𝑑 ∈ ( ℤ ↑m 𝐵 ) ) → ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) : ( ℎ ∪ 𝑗 ) ⟶ ℤ ) |
117 |
|
zex |
⊢ ℤ ∈ V |
118 |
117 82
|
elmap |
⊢ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↔ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) : ( ℎ ∪ 𝑗 ) ⟶ ℤ ) |
119 |
116 118
|
sylibr |
⊢ ( ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) ∧ 𝑑 ∈ ( ℤ ↑m 𝐵 ) ) → ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ) |
120 |
|
reseq1 |
⊢ ( 𝑙 = ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) → ( 𝑙 ↾ ℎ ) = ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ ℎ ) ) |
121 |
120
|
fveq2d |
⊢ ( 𝑙 = ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) → ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) = ( 𝑖 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ ℎ ) ) ) |
122 |
|
reseq1 |
⊢ ( 𝑙 = ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) → ( 𝑙 ↾ 𝑗 ) = ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ 𝑗 ) ) |
123 |
122
|
fveq2d |
⊢ ( 𝑙 = ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) → ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) = ( 𝑘 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ 𝑗 ) ) ) |
124 |
121 123
|
oveq12d |
⊢ ( 𝑙 = ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) → ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) = ( ( 𝑖 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ ℎ ) ) + ( 𝑘 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ 𝑗 ) ) ) ) |
125 |
|
eqid |
⊢ ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) = ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) |
126 |
|
ovex |
⊢ ( ( 𝑖 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ ℎ ) ) + ( 𝑘 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ 𝑗 ) ) ) ∈ V |
127 |
124 125 126
|
fvmpt |
⊢ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) → ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) = ( ( 𝑖 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ ℎ ) ) + ( 𝑘 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ 𝑗 ) ) ) ) |
128 |
119 127
|
syl |
⊢ ( ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) ∧ 𝑑 ∈ ( ℤ ↑m 𝐵 ) ) → ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) = ( ( 𝑖 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ ℎ ) ) + ( 𝑘 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ 𝑗 ) ) ) ) |
129 |
|
resabs1 |
⊢ ( ℎ ⊆ ( ℎ ∪ 𝑗 ) → ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ ℎ ) = ( 𝑑 ↾ ℎ ) ) |
130 |
84 129
|
ax-mp |
⊢ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ ℎ ) = ( 𝑑 ↾ ℎ ) |
131 |
130
|
fveq2i |
⊢ ( 𝑖 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ ℎ ) ) = ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) |
132 |
|
resabs1 |
⊢ ( 𝑗 ⊆ ( ℎ ∪ 𝑗 ) → ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ 𝑗 ) = ( 𝑑 ↾ 𝑗 ) ) |
133 |
89 132
|
ax-mp |
⊢ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ 𝑗 ) = ( 𝑑 ↾ 𝑗 ) |
134 |
133
|
fveq2i |
⊢ ( 𝑘 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ 𝑗 ) ) = ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) |
135 |
131 134
|
oveq12i |
⊢ ( ( 𝑖 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ ℎ ) ) + ( 𝑘 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ 𝑗 ) ) ) = ( ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) |
136 |
128 135
|
eqtr2di |
⊢ ( ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) ∧ 𝑑 ∈ ( ℤ ↑m 𝐵 ) ) → ( ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) = ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) |
137 |
136
|
mpteq2dva |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) |
138 |
113 137
|
eqtrd |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) |
139 |
|
fveq1 |
⊢ ( 𝑏 = ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) → ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) = ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) |
140 |
139
|
mpteq2dv |
⊢ ( 𝑏 = ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) |
141 |
140
|
eqeq2d |
⊢ ( 𝑏 = ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) → ( ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ↔ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ) |
142 |
141
|
anbi2d |
⊢ ( 𝑏 = ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) → ( ( ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ↔ ( ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ) ) |
143 |
142
|
rspcev |
⊢ ( ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ∧ ( ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ) → ∃ 𝑏 ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ( ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ) |
144 |
95 98 138 143
|
syl12anc |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ∃ 𝑏 ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ( ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ) |
145 |
|
mzpmulmpt |
⊢ ( ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) ) ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ∧ ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ) → ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ) |
146 |
88 93 145
|
syl2anc |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ) |
147 |
|
ofmpteq |
⊢ ( ( ( ℤ ↑m 𝐵 ) ∈ V ∧ ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) Fn ( ℤ ↑m 𝐵 ) ∧ ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) Fn ( ℤ ↑m 𝐵 ) ) → ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) |
148 |
100 106 111 147
|
syl3anc |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) |
149 |
121 123
|
oveq12d |
⊢ ( 𝑙 = ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) → ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) = ( ( 𝑖 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ ℎ ) ) · ( 𝑘 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ 𝑗 ) ) ) ) |
150 |
|
eqid |
⊢ ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) = ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) |
151 |
|
ovex |
⊢ ( ( 𝑖 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ ℎ ) ) · ( 𝑘 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ 𝑗 ) ) ) ∈ V |
152 |
149 150 151
|
fvmpt |
⊢ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) → ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) = ( ( 𝑖 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ ℎ ) ) · ( 𝑘 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ 𝑗 ) ) ) ) |
153 |
119 152
|
syl |
⊢ ( ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) ∧ 𝑑 ∈ ( ℤ ↑m 𝐵 ) ) → ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) = ( ( 𝑖 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ ℎ ) ) · ( 𝑘 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ 𝑗 ) ) ) ) |
154 |
131 134
|
oveq12i |
⊢ ( ( 𝑖 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ ℎ ) ) · ( 𝑘 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ 𝑗 ) ) ) = ( ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) |
155 |
153 154
|
eqtr2di |
⊢ ( ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) ∧ 𝑑 ∈ ( ℤ ↑m 𝐵 ) ) → ( ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) = ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) |
156 |
155
|
mpteq2dva |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) |
157 |
148 156
|
eqtrd |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) |
158 |
|
fveq1 |
⊢ ( 𝑏 = ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) → ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) = ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) |
159 |
158
|
mpteq2dv |
⊢ ( 𝑏 = ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) |
160 |
159
|
eqeq2d |
⊢ ( 𝑏 = ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) → ( ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ↔ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ) |
161 |
160
|
anbi2d |
⊢ ( 𝑏 = ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) → ( ( ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ↔ ( ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ) ) |
162 |
161
|
rspcev |
⊢ ( ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ∧ ( ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ) → ∃ 𝑏 ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ( ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ) |
163 |
146 98 157 162
|
syl12anc |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ∃ 𝑏 ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ( ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ) |
164 |
|
fveq2 |
⊢ ( 𝑎 = ( ℎ ∪ 𝑗 ) → ( mzPoly ‘ 𝑎 ) = ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ) |
165 |
|
sseq1 |
⊢ ( 𝑎 = ( ℎ ∪ 𝑗 ) → ( 𝑎 ⊆ 𝐵 ↔ ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ) ) |
166 |
|
reseq2 |
⊢ ( 𝑎 = ( ℎ ∪ 𝑗 ) → ( 𝑑 ↾ 𝑎 ) = ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) |
167 |
166
|
fveq2d |
⊢ ( 𝑎 = ( ℎ ∪ 𝑗 ) → ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) = ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) |
168 |
167
|
mpteq2dv |
⊢ ( 𝑎 = ( ℎ ∪ 𝑗 ) → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) |
169 |
168
|
eqeq2d |
⊢ ( 𝑎 = ( ℎ ∪ 𝑗 ) → ( ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ↔ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ) |
170 |
165 169
|
anbi12d |
⊢ ( 𝑎 = ( ℎ ∪ 𝑗 ) → ( ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ( ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ) ) |
171 |
164 170
|
rexeqbidv |
⊢ ( 𝑎 = ( ℎ ∪ 𝑗 ) → ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑏 ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ( ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ) ) |
172 |
168
|
eqeq2d |
⊢ ( 𝑎 = ( ℎ ∪ 𝑗 ) → ( ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ↔ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ) |
173 |
165 172
|
anbi12d |
⊢ ( 𝑎 = ( ℎ ∪ 𝑗 ) → ( ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ( ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ) ) |
174 |
164 173
|
rexeqbidv |
⊢ ( 𝑎 = ( ℎ ∪ 𝑗 ) → ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑏 ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ( ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ) ) |
175 |
171 174
|
anbi12d |
⊢ ( 𝑎 = ( ℎ ∪ 𝑗 ) → ( ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ↔ ( ∃ 𝑏 ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ( ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ∧ ∃ 𝑏 ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ( ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ) ) ) |
176 |
175
|
rspcev |
⊢ ( ( ( ℎ ∪ 𝑗 ) ∈ Fin ∧ ( ∃ 𝑏 ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ( ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ∧ ∃ 𝑏 ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ( ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ) ) → ∃ 𝑎 ∈ Fin ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
177 |
79 144 163 176
|
syl12anc |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ∃ 𝑎 ∈ Fin ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
178 |
177
|
adantlrr |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ∃ 𝑎 ∈ Fin ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
179 |
178
|
adantrrr |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → ∃ 𝑎 ∈ Fin ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
180 |
|
simplrr |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) |
181 |
|
simprrr |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) |
182 |
180 181
|
oveq12d |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → ( 𝑓 ∘f + 𝑔 ) = ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) |
183 |
182
|
eqeq1d |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → ( ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ↔ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
184 |
183
|
anbi2d |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → ( ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
185 |
184
|
rexbidv |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
186 |
180 181
|
oveq12d |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → ( 𝑓 ∘f · 𝑔 ) = ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) |
187 |
186
|
eqeq1d |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → ( ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ↔ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
188 |
187
|
anbi2d |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → ( ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
189 |
188
|
rexbidv |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
190 |
185 189
|
anbi12d |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → ( ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ↔ ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) ) |
191 |
190
|
rexbidv |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → ( ∃ 𝑎 ∈ Fin ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ↔ ∃ 𝑎 ∈ Fin ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) ) |
192 |
179 191
|
mpbird |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → ∃ 𝑎 ∈ Fin ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
193 |
|
r19.40 |
⊢ ( ∃ 𝑎 ∈ Fin ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
194 |
192 193
|
syl |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
195 |
194
|
exp32 |
⊢ ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) → ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) → ( ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) ) ) |
196 |
195
|
rexlimdvv |
⊢ ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) → ( ∃ 𝑗 ∈ Fin ∃ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) ) |
197 |
196
|
ex |
⊢ ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) → ( ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) → ( ∃ 𝑗 ∈ Fin ∃ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) ) ) |
198 |
197
|
rexlimivv |
⊢ ( ∃ ℎ ∈ Fin ∃ 𝑖 ∈ ( mzPoly ‘ ℎ ) ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) → ( ∃ 𝑗 ∈ Fin ∃ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) ) |
199 |
198
|
imp |
⊢ ( ( ∃ ℎ ∈ Fin ∃ 𝑖 ∈ ( mzPoly ‘ ℎ ) ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ∧ ∃ 𝑗 ∈ Fin ∃ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
200 |
199
|
ad2ant2l |
⊢ ( ( ( 𝑓 : ( ℤ ↑m 𝐵 ) ⟶ ℤ ∧ ∃ ℎ ∈ Fin ∃ 𝑖 ∈ ( mzPoly ‘ ℎ ) ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( 𝑔 : ( ℤ ↑m 𝐵 ) ⟶ ℤ ∧ ∃ 𝑗 ∈ Fin ∃ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
201 |
200
|
3adant1 |
⊢ ( ( ⊤ ∧ ( 𝑓 : ( ℤ ↑m 𝐵 ) ⟶ ℤ ∧ ∃ ℎ ∈ Fin ∃ 𝑖 ∈ ( mzPoly ‘ ℎ ) ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( 𝑔 : ( ℤ ↑m 𝐵 ) ⟶ ℤ ∧ ∃ 𝑗 ∈ Fin ∃ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
202 |
201
|
simpld |
⊢ ( ( ⊤ ∧ ( 𝑓 : ( ℤ ↑m 𝐵 ) ⟶ ℤ ∧ ∃ ℎ ∈ Fin ∃ 𝑖 ∈ ( mzPoly ‘ ℎ ) ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( 𝑔 : ( ℤ ↑m 𝐵 ) ⟶ ℤ ∧ ∃ 𝑗 ∈ Fin ∃ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
203 |
201
|
simprd |
⊢ ( ( ⊤ ∧ ( 𝑓 : ( ℤ ↑m 𝐵 ) ⟶ ℤ ∧ ∃ ℎ ∈ Fin ∃ 𝑖 ∈ ( mzPoly ‘ ℎ ) ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( 𝑔 : ( ℤ ↑m 𝐵 ) ⟶ ℤ ∧ ∃ 𝑗 ∈ Fin ∃ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
204 |
|
eqeq1 |
⊢ ( 𝑒 = ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) → ( 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ↔ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
205 |
204
|
anbi2d |
⊢ ( 𝑒 = ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) → ( ( 𝑎 ⊆ 𝐵 ∧ 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ( 𝑎 ⊆ 𝐵 ∧ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
206 |
205
|
2rexbidv |
⊢ ( 𝑒 = ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
207 |
|
eqeq1 |
⊢ ( 𝑒 = ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) → ( 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ↔ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
208 |
207
|
anbi2d |
⊢ ( 𝑒 = ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) → ( ( 𝑎 ⊆ 𝐵 ∧ 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ( 𝑎 ⊆ 𝐵 ∧ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
209 |
208
|
2rexbidv |
⊢ ( 𝑒 = ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
210 |
|
eqeq1 |
⊢ ( 𝑒 = 𝑓 → ( 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ↔ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
211 |
210
|
anbi2d |
⊢ ( 𝑒 = 𝑓 → ( ( 𝑎 ⊆ 𝐵 ∧ 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ( 𝑎 ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
212 |
211
|
2rexbidv |
⊢ ( 𝑒 = 𝑓 → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
213 |
|
fveq2 |
⊢ ( 𝑎 = ℎ → ( mzPoly ‘ 𝑎 ) = ( mzPoly ‘ ℎ ) ) |
214 |
|
sseq1 |
⊢ ( 𝑎 = ℎ → ( 𝑎 ⊆ 𝐵 ↔ ℎ ⊆ 𝐵 ) ) |
215 |
|
reseq2 |
⊢ ( 𝑎 = ℎ → ( 𝑑 ↾ 𝑎 ) = ( 𝑑 ↾ ℎ ) ) |
216 |
215
|
fveq2d |
⊢ ( 𝑎 = ℎ → ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) = ( 𝑏 ‘ ( 𝑑 ↾ ℎ ) ) ) |
217 |
216
|
mpteq2dv |
⊢ ( 𝑎 = ℎ → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ℎ ) ) ) ) |
218 |
217
|
eqeq2d |
⊢ ( 𝑎 = ℎ → ( 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ↔ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) |
219 |
214 218
|
anbi12d |
⊢ ( 𝑎 = ℎ → ( ( 𝑎 ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ) |
220 |
213 219
|
rexeqbidv |
⊢ ( 𝑎 = ℎ → ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑏 ∈ ( mzPoly ‘ ℎ ) ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ) |
221 |
|
fveq1 |
⊢ ( 𝑏 = 𝑖 → ( 𝑏 ‘ ( 𝑑 ↾ ℎ ) ) = ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) |
222 |
221
|
mpteq2dv |
⊢ ( 𝑏 = 𝑖 → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ℎ ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) |
223 |
222
|
eqeq2d |
⊢ ( 𝑏 = 𝑖 → ( 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ℎ ) ) ) ↔ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) |
224 |
223
|
anbi2d |
⊢ ( 𝑏 = 𝑖 → ( ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ↔ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ) |
225 |
224
|
cbvrexvw |
⊢ ( ∃ 𝑏 ∈ ( mzPoly ‘ ℎ ) ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ↔ ∃ 𝑖 ∈ ( mzPoly ‘ ℎ ) ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) |
226 |
220 225
|
bitrdi |
⊢ ( 𝑎 = ℎ → ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑖 ∈ ( mzPoly ‘ ℎ ) ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ) |
227 |
226
|
cbvrexvw |
⊢ ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ ℎ ∈ Fin ∃ 𝑖 ∈ ( mzPoly ‘ ℎ ) ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) |
228 |
212 227
|
bitrdi |
⊢ ( 𝑒 = 𝑓 → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ ℎ ∈ Fin ∃ 𝑖 ∈ ( mzPoly ‘ ℎ ) ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ) |
229 |
|
eqeq1 |
⊢ ( 𝑒 = 𝑔 → ( 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ↔ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
230 |
229
|
anbi2d |
⊢ ( 𝑒 = 𝑔 → ( ( 𝑎 ⊆ 𝐵 ∧ 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ( 𝑎 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
231 |
230
|
2rexbidv |
⊢ ( 𝑒 = 𝑔 → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
232 |
|
fveq2 |
⊢ ( 𝑎 = 𝑗 → ( mzPoly ‘ 𝑎 ) = ( mzPoly ‘ 𝑗 ) ) |
233 |
|
sseq1 |
⊢ ( 𝑎 = 𝑗 → ( 𝑎 ⊆ 𝐵 ↔ 𝑗 ⊆ 𝐵 ) ) |
234 |
|
reseq2 |
⊢ ( 𝑎 = 𝑗 → ( 𝑑 ↾ 𝑎 ) = ( 𝑑 ↾ 𝑗 ) ) |
235 |
234
|
fveq2d |
⊢ ( 𝑎 = 𝑗 → ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) = ( 𝑏 ‘ ( 𝑑 ↾ 𝑗 ) ) ) |
236 |
235
|
mpteq2dv |
⊢ ( 𝑎 = 𝑗 → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) |
237 |
236
|
eqeq2d |
⊢ ( 𝑎 = 𝑗 → ( 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ↔ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) |
238 |
233 237
|
anbi12d |
⊢ ( 𝑎 = 𝑗 → ( ( 𝑎 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) |
239 |
232 238
|
rexeqbidv |
⊢ ( 𝑎 = 𝑗 → ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑏 ∈ ( mzPoly ‘ 𝑗 ) ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) |
240 |
|
fveq1 |
⊢ ( 𝑏 = 𝑘 → ( 𝑏 ‘ ( 𝑑 ↾ 𝑗 ) ) = ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) |
241 |
240
|
mpteq2dv |
⊢ ( 𝑏 = 𝑘 → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑗 ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) |
242 |
241
|
eqeq2d |
⊢ ( 𝑏 = 𝑘 → ( 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ↔ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) |
243 |
242
|
anbi2d |
⊢ ( 𝑏 = 𝑘 → ( ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ↔ ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) |
244 |
243
|
cbvrexvw |
⊢ ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑗 ) ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ↔ ∃ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) |
245 |
239 244
|
bitrdi |
⊢ ( 𝑎 = 𝑗 → ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) |
246 |
245
|
cbvrexvw |
⊢ ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑗 ∈ Fin ∃ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) |
247 |
231 246
|
bitrdi |
⊢ ( 𝑒 = 𝑔 → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑗 ∈ Fin ∃ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) |
248 |
|
eqeq1 |
⊢ ( 𝑒 = ( 𝑓 ∘f + 𝑔 ) → ( 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ↔ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
249 |
248
|
anbi2d |
⊢ ( 𝑒 = ( 𝑓 ∘f + 𝑔 ) → ( ( 𝑎 ⊆ 𝐵 ∧ 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
250 |
249
|
2rexbidv |
⊢ ( 𝑒 = ( 𝑓 ∘f + 𝑔 ) → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
251 |
|
eqeq1 |
⊢ ( 𝑒 = ( 𝑓 ∘f · 𝑔 ) → ( 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ↔ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
252 |
251
|
anbi2d |
⊢ ( 𝑒 = ( 𝑓 ∘f · 𝑔 ) → ( ( 𝑎 ⊆ 𝐵 ∧ 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
253 |
252
|
2rexbidv |
⊢ ( 𝑒 = ( 𝑓 ∘f · 𝑔 ) → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
254 |
|
eqeq1 |
⊢ ( 𝑒 = 𝐴 → ( 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ↔ 𝐴 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
255 |
254
|
anbi2d |
⊢ ( 𝑒 = 𝐴 → ( ( 𝑎 ⊆ 𝐵 ∧ 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ( 𝑎 ⊆ 𝐵 ∧ 𝐴 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
256 |
255
|
2rexbidv |
⊢ ( 𝑒 = 𝐴 → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝐴 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
257 |
34 75 202 203 206 209 228 247 250 253 256
|
mzpindd |
⊢ ( ( ⊤ ∧ 𝐴 ∈ ( mzPoly ‘ 𝐵 ) ) → ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝐴 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
258 |
2 257
|
mpan |
⊢ ( 𝐴 ∈ ( mzPoly ‘ 𝐵 ) → ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝐴 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
259 |
|
reseq1 |
⊢ ( 𝑑 = 𝑐 → ( 𝑑 ↾ 𝑎 ) = ( 𝑐 ↾ 𝑎 ) ) |
260 |
259
|
fveq2d |
⊢ ( 𝑑 = 𝑐 → ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) = ( 𝑏 ‘ ( 𝑐 ↾ 𝑎 ) ) ) |
261 |
260
|
cbvmptv |
⊢ ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) = ( 𝑐 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑐 ↾ 𝑎 ) ) ) |
262 |
261
|
eqeq2i |
⊢ ( 𝐴 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ↔ 𝐴 = ( 𝑐 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑐 ↾ 𝑎 ) ) ) ) |
263 |
262
|
anbi2i |
⊢ ( ( 𝑎 ⊆ 𝐵 ∧ 𝐴 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ( 𝑎 ⊆ 𝐵 ∧ 𝐴 = ( 𝑐 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑐 ↾ 𝑎 ) ) ) ) ) |
264 |
263
|
2rexbii |
⊢ ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝐴 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝐴 = ( 𝑐 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑐 ↾ 𝑎 ) ) ) ) ) |
265 |
258 264
|
sylib |
⊢ ( 𝐴 ∈ ( mzPoly ‘ 𝐵 ) → ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝐴 = ( 𝑐 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑐 ↾ 𝑎 ) ) ) ) ) |