| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mzpcompact2lem.i |
⊢ 𝐵 ∈ V |
| 2 |
|
tru |
⊢ ⊤ |
| 3 |
|
0fi |
⊢ ∅ ∈ Fin |
| 4 |
|
0ex |
⊢ ∅ ∈ V |
| 5 |
|
mzpconst |
⊢ ( ( ∅ ∈ V ∧ 𝑓 ∈ ℤ ) → ( ( ℤ ↑m ∅ ) × { 𝑓 } ) ∈ ( mzPoly ‘ ∅ ) ) |
| 6 |
4 5
|
mpan |
⊢ ( 𝑓 ∈ ℤ → ( ( ℤ ↑m ∅ ) × { 𝑓 } ) ∈ ( mzPoly ‘ ∅ ) ) |
| 7 |
|
0ss |
⊢ ∅ ⊆ 𝐵 |
| 8 |
7
|
a1i |
⊢ ( 𝑓 ∈ ℤ → ∅ ⊆ 𝐵 ) |
| 9 |
|
fconstmpt |
⊢ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ 𝑓 ) |
| 10 |
|
simpr |
⊢ ( ( 𝑓 ∈ ℤ ∧ 𝑑 ∈ ( ℤ ↑m 𝐵 ) ) → 𝑑 ∈ ( ℤ ↑m 𝐵 ) ) |
| 11 |
|
elmapssres |
⊢ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ∧ ∅ ⊆ 𝐵 ) → ( 𝑑 ↾ ∅ ) ∈ ( ℤ ↑m ∅ ) ) |
| 12 |
10 7 11
|
sylancl |
⊢ ( ( 𝑓 ∈ ℤ ∧ 𝑑 ∈ ( ℤ ↑m 𝐵 ) ) → ( 𝑑 ↾ ∅ ) ∈ ( ℤ ↑m ∅ ) ) |
| 13 |
|
vex |
⊢ 𝑓 ∈ V |
| 14 |
13
|
fvconst2 |
⊢ ( ( 𝑑 ↾ ∅ ) ∈ ( ℤ ↑m ∅ ) → ( ( ( ℤ ↑m ∅ ) × { 𝑓 } ) ‘ ( 𝑑 ↾ ∅ ) ) = 𝑓 ) |
| 15 |
12 14
|
syl |
⊢ ( ( 𝑓 ∈ ℤ ∧ 𝑑 ∈ ( ℤ ↑m 𝐵 ) ) → ( ( ( ℤ ↑m ∅ ) × { 𝑓 } ) ‘ ( 𝑑 ↾ ∅ ) ) = 𝑓 ) |
| 16 |
15
|
mpteq2dva |
⊢ ( 𝑓 ∈ ℤ → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( ( ℤ ↑m ∅ ) × { 𝑓 } ) ‘ ( 𝑑 ↾ ∅ ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ 𝑓 ) ) |
| 17 |
9 16
|
eqtr4id |
⊢ ( 𝑓 ∈ ℤ → ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( ( ℤ ↑m ∅ ) × { 𝑓 } ) ‘ ( 𝑑 ↾ ∅ ) ) ) ) |
| 18 |
|
fveq1 |
⊢ ( 𝑏 = ( ( ℤ ↑m ∅ ) × { 𝑓 } ) → ( 𝑏 ‘ ( 𝑑 ↾ ∅ ) ) = ( ( ( ℤ ↑m ∅ ) × { 𝑓 } ) ‘ ( 𝑑 ↾ ∅ ) ) ) |
| 19 |
18
|
mpteq2dv |
⊢ ( 𝑏 = ( ( ℤ ↑m ∅ ) × { 𝑓 } ) → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ∅ ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( ( ℤ ↑m ∅ ) × { 𝑓 } ) ‘ ( 𝑑 ↾ ∅ ) ) ) ) |
| 20 |
19
|
eqeq2d |
⊢ ( 𝑏 = ( ( ℤ ↑m ∅ ) × { 𝑓 } ) → ( ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ∅ ) ) ) ↔ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( ( ℤ ↑m ∅ ) × { 𝑓 } ) ‘ ( 𝑑 ↾ ∅ ) ) ) ) ) |
| 21 |
20
|
anbi2d |
⊢ ( 𝑏 = ( ( ℤ ↑m ∅ ) × { 𝑓 } ) → ( ( ∅ ⊆ 𝐵 ∧ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ∅ ) ) ) ) ↔ ( ∅ ⊆ 𝐵 ∧ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( ( ℤ ↑m ∅ ) × { 𝑓 } ) ‘ ( 𝑑 ↾ ∅ ) ) ) ) ) ) |
| 22 |
21
|
rspcev |
⊢ ( ( ( ( ℤ ↑m ∅ ) × { 𝑓 } ) ∈ ( mzPoly ‘ ∅ ) ∧ ( ∅ ⊆ 𝐵 ∧ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( ( ℤ ↑m ∅ ) × { 𝑓 } ) ‘ ( 𝑑 ↾ ∅ ) ) ) ) ) → ∃ 𝑏 ∈ ( mzPoly ‘ ∅ ) ( ∅ ⊆ 𝐵 ∧ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ∅ ) ) ) ) ) |
| 23 |
6 8 17 22
|
syl12anc |
⊢ ( 𝑓 ∈ ℤ → ∃ 𝑏 ∈ ( mzPoly ‘ ∅ ) ( ∅ ⊆ 𝐵 ∧ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ∅ ) ) ) ) ) |
| 24 |
|
fveq2 |
⊢ ( 𝑎 = ∅ → ( mzPoly ‘ 𝑎 ) = ( mzPoly ‘ ∅ ) ) |
| 25 |
|
sseq1 |
⊢ ( 𝑎 = ∅ → ( 𝑎 ⊆ 𝐵 ↔ ∅ ⊆ 𝐵 ) ) |
| 26 |
|
reseq2 |
⊢ ( 𝑎 = ∅ → ( 𝑑 ↾ 𝑎 ) = ( 𝑑 ↾ ∅ ) ) |
| 27 |
26
|
fveq2d |
⊢ ( 𝑎 = ∅ → ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) = ( 𝑏 ‘ ( 𝑑 ↾ ∅ ) ) ) |
| 28 |
27
|
mpteq2dv |
⊢ ( 𝑎 = ∅ → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ∅ ) ) ) ) |
| 29 |
28
|
eqeq2d |
⊢ ( 𝑎 = ∅ → ( ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ↔ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ∅ ) ) ) ) ) |
| 30 |
25 29
|
anbi12d |
⊢ ( 𝑎 = ∅ → ( ( 𝑎 ⊆ 𝐵 ∧ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ( ∅ ⊆ 𝐵 ∧ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ∅ ) ) ) ) ) ) |
| 31 |
24 30
|
rexeqbidv |
⊢ ( 𝑎 = ∅ → ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑏 ∈ ( mzPoly ‘ ∅ ) ( ∅ ⊆ 𝐵 ∧ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ∅ ) ) ) ) ) ) |
| 32 |
31
|
rspcev |
⊢ ( ( ∅ ∈ Fin ∧ ∃ 𝑏 ∈ ( mzPoly ‘ ∅ ) ( ∅ ⊆ 𝐵 ∧ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ∅ ) ) ) ) ) → ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
| 33 |
3 23 32
|
sylancr |
⊢ ( 𝑓 ∈ ℤ → ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
| 34 |
33
|
adantl |
⊢ ( ( ⊤ ∧ 𝑓 ∈ ℤ ) → ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
| 35 |
|
snfi |
⊢ { 𝑓 } ∈ Fin |
| 36 |
|
vsnex |
⊢ { 𝑓 } ∈ V |
| 37 |
|
vsnid |
⊢ 𝑓 ∈ { 𝑓 } |
| 38 |
|
mzpproj |
⊢ ( ( { 𝑓 } ∈ V ∧ 𝑓 ∈ { 𝑓 } ) → ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) ∈ ( mzPoly ‘ { 𝑓 } ) ) |
| 39 |
36 37 38
|
mp2an |
⊢ ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) ∈ ( mzPoly ‘ { 𝑓 } ) |
| 40 |
39
|
a1i |
⊢ ( 𝑓 ∈ 𝐵 → ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) ∈ ( mzPoly ‘ { 𝑓 } ) ) |
| 41 |
|
snssi |
⊢ ( 𝑓 ∈ 𝐵 → { 𝑓 } ⊆ 𝐵 ) |
| 42 |
|
fveq1 |
⊢ ( 𝑔 = 𝑑 → ( 𝑔 ‘ 𝑓 ) = ( 𝑑 ‘ 𝑓 ) ) |
| 43 |
42
|
cbvmptv |
⊢ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑑 ‘ 𝑓 ) ) |
| 44 |
|
simpr |
⊢ ( ( 𝑓 ∈ 𝐵 ∧ 𝑑 ∈ ( ℤ ↑m 𝐵 ) ) → 𝑑 ∈ ( ℤ ↑m 𝐵 ) ) |
| 45 |
|
simpl |
⊢ ( ( 𝑓 ∈ 𝐵 ∧ 𝑑 ∈ ( ℤ ↑m 𝐵 ) ) → 𝑓 ∈ 𝐵 ) |
| 46 |
45
|
snssd |
⊢ ( ( 𝑓 ∈ 𝐵 ∧ 𝑑 ∈ ( ℤ ↑m 𝐵 ) ) → { 𝑓 } ⊆ 𝐵 ) |
| 47 |
|
elmapssres |
⊢ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ∧ { 𝑓 } ⊆ 𝐵 ) → ( 𝑑 ↾ { 𝑓 } ) ∈ ( ℤ ↑m { 𝑓 } ) ) |
| 48 |
44 46 47
|
syl2anc |
⊢ ( ( 𝑓 ∈ 𝐵 ∧ 𝑑 ∈ ( ℤ ↑m 𝐵 ) ) → ( 𝑑 ↾ { 𝑓 } ) ∈ ( ℤ ↑m { 𝑓 } ) ) |
| 49 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝑑 ↾ { 𝑓 } ) → ( 𝑔 ‘ 𝑓 ) = ( ( 𝑑 ↾ { 𝑓 } ) ‘ 𝑓 ) ) |
| 50 |
|
eqid |
⊢ ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) |
| 51 |
|
fvex |
⊢ ( ( 𝑑 ↾ { 𝑓 } ) ‘ 𝑓 ) ∈ V |
| 52 |
49 50 51
|
fvmpt |
⊢ ( ( 𝑑 ↾ { 𝑓 } ) ∈ ( ℤ ↑m { 𝑓 } ) → ( ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) ‘ ( 𝑑 ↾ { 𝑓 } ) ) = ( ( 𝑑 ↾ { 𝑓 } ) ‘ 𝑓 ) ) |
| 53 |
48 52
|
syl |
⊢ ( ( 𝑓 ∈ 𝐵 ∧ 𝑑 ∈ ( ℤ ↑m 𝐵 ) ) → ( ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) ‘ ( 𝑑 ↾ { 𝑓 } ) ) = ( ( 𝑑 ↾ { 𝑓 } ) ‘ 𝑓 ) ) |
| 54 |
|
fvres |
⊢ ( 𝑓 ∈ { 𝑓 } → ( ( 𝑑 ↾ { 𝑓 } ) ‘ 𝑓 ) = ( 𝑑 ‘ 𝑓 ) ) |
| 55 |
37 54
|
ax-mp |
⊢ ( ( 𝑑 ↾ { 𝑓 } ) ‘ 𝑓 ) = ( 𝑑 ‘ 𝑓 ) |
| 56 |
53 55
|
eqtr2di |
⊢ ( ( 𝑓 ∈ 𝐵 ∧ 𝑑 ∈ ( ℤ ↑m 𝐵 ) ) → ( 𝑑 ‘ 𝑓 ) = ( ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) |
| 57 |
56
|
mpteq2dva |
⊢ ( 𝑓 ∈ 𝐵 → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑑 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) ) |
| 58 |
43 57
|
eqtrid |
⊢ ( 𝑓 ∈ 𝐵 → ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) ) |
| 59 |
|
fveq1 |
⊢ ( 𝑏 = ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) → ( 𝑏 ‘ ( 𝑑 ↾ { 𝑓 } ) ) = ( ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) |
| 60 |
59
|
mpteq2dv |
⊢ ( 𝑏 = ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) ) |
| 61 |
60
|
eqeq2d |
⊢ ( 𝑏 = ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) → ( ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) ↔ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) ) ) |
| 62 |
61
|
anbi2d |
⊢ ( 𝑏 = ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) → ( ( { 𝑓 } ⊆ 𝐵 ∧ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) ) ↔ ( { 𝑓 } ⊆ 𝐵 ∧ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) ) ) ) |
| 63 |
62
|
rspcev |
⊢ ( ( ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) ∈ ( mzPoly ‘ { 𝑓 } ) ∧ ( { 𝑓 } ⊆ 𝐵 ∧ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑔 ∈ ( ℤ ↑m { 𝑓 } ) ↦ ( 𝑔 ‘ 𝑓 ) ) ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) ) ) → ∃ 𝑏 ∈ ( mzPoly ‘ { 𝑓 } ) ( { 𝑓 } ⊆ 𝐵 ∧ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) ) ) |
| 64 |
40 41 58 63
|
syl12anc |
⊢ ( 𝑓 ∈ 𝐵 → ∃ 𝑏 ∈ ( mzPoly ‘ { 𝑓 } ) ( { 𝑓 } ⊆ 𝐵 ∧ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) ) ) |
| 65 |
|
fveq2 |
⊢ ( 𝑎 = { 𝑓 } → ( mzPoly ‘ 𝑎 ) = ( mzPoly ‘ { 𝑓 } ) ) |
| 66 |
|
sseq1 |
⊢ ( 𝑎 = { 𝑓 } → ( 𝑎 ⊆ 𝐵 ↔ { 𝑓 } ⊆ 𝐵 ) ) |
| 67 |
|
reseq2 |
⊢ ( 𝑎 = { 𝑓 } → ( 𝑑 ↾ 𝑎 ) = ( 𝑑 ↾ { 𝑓 } ) ) |
| 68 |
67
|
fveq2d |
⊢ ( 𝑎 = { 𝑓 } → ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) = ( 𝑏 ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) |
| 69 |
68
|
mpteq2dv |
⊢ ( 𝑎 = { 𝑓 } → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) ) |
| 70 |
69
|
eqeq2d |
⊢ ( 𝑎 = { 𝑓 } → ( ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ↔ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) ) ) |
| 71 |
66 70
|
anbi12d |
⊢ ( 𝑎 = { 𝑓 } → ( ( 𝑎 ⊆ 𝐵 ∧ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ( { 𝑓 } ⊆ 𝐵 ∧ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) ) ) ) |
| 72 |
65 71
|
rexeqbidv |
⊢ ( 𝑎 = { 𝑓 } → ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑏 ∈ ( mzPoly ‘ { 𝑓 } ) ( { 𝑓 } ⊆ 𝐵 ∧ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) ) ) ) |
| 73 |
72
|
rspcev |
⊢ ( ( { 𝑓 } ∈ Fin ∧ ∃ 𝑏 ∈ ( mzPoly ‘ { 𝑓 } ) ( { 𝑓 } ⊆ 𝐵 ∧ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ { 𝑓 } ) ) ) ) ) → ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
| 74 |
35 64 73
|
sylancr |
⊢ ( 𝑓 ∈ 𝐵 → ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
| 75 |
74
|
adantl |
⊢ ( ( ⊤ ∧ 𝑓 ∈ 𝐵 ) → ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
| 76 |
|
simplll |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ℎ ∈ Fin ) |
| 77 |
|
simprll |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → 𝑗 ∈ Fin ) |
| 78 |
|
unfi |
⊢ ( ( ℎ ∈ Fin ∧ 𝑗 ∈ Fin ) → ( ℎ ∪ 𝑗 ) ∈ Fin ) |
| 79 |
76 77 78
|
syl2anc |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ( ℎ ∪ 𝑗 ) ∈ Fin ) |
| 80 |
|
vex |
⊢ ℎ ∈ V |
| 81 |
|
vex |
⊢ 𝑗 ∈ V |
| 82 |
80 81
|
unex |
⊢ ( ℎ ∪ 𝑗 ) ∈ V |
| 83 |
82
|
a1i |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ( ℎ ∪ 𝑗 ) ∈ V ) |
| 84 |
|
ssun1 |
⊢ ℎ ⊆ ( ℎ ∪ 𝑗 ) |
| 85 |
84
|
a1i |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ℎ ⊆ ( ℎ ∪ 𝑗 ) ) |
| 86 |
|
simpllr |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → 𝑖 ∈ ( mzPoly ‘ ℎ ) ) |
| 87 |
|
mzpresrename |
⊢ ( ( ( ℎ ∪ 𝑗 ) ∈ V ∧ ℎ ⊆ ( ℎ ∪ 𝑗 ) ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) → ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) ) ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ) |
| 88 |
83 85 86 87
|
syl3anc |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) ) ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ) |
| 89 |
|
ssun2 |
⊢ 𝑗 ⊆ ( ℎ ∪ 𝑗 ) |
| 90 |
89
|
a1i |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → 𝑗 ⊆ ( ℎ ∪ 𝑗 ) ) |
| 91 |
|
simprlr |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) |
| 92 |
|
mzpresrename |
⊢ ( ( ( ℎ ∪ 𝑗 ) ∈ V ∧ 𝑗 ⊆ ( ℎ ∪ 𝑗 ) ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) → ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ) |
| 93 |
83 90 91 92
|
syl3anc |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ) |
| 94 |
|
mzpaddmpt |
⊢ ( ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) ) ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ∧ ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ) → ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ) |
| 95 |
88 93 94
|
syl2anc |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ) |
| 96 |
|
simplr |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ℎ ⊆ 𝐵 ) |
| 97 |
|
simprr |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → 𝑗 ⊆ 𝐵 ) |
| 98 |
96 97
|
unssd |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ) |
| 99 |
|
ovex |
⊢ ( ℤ ↑m 𝐵 ) ∈ V |
| 100 |
99
|
a1i |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ( ℤ ↑m 𝐵 ) ∈ V ) |
| 101 |
1
|
a1i |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → 𝐵 ∈ V ) |
| 102 |
|
mzpresrename |
⊢ ( ( 𝐵 ∈ V ∧ ℎ ⊆ 𝐵 ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∈ ( mzPoly ‘ 𝐵 ) ) |
| 103 |
101 96 86 102
|
syl3anc |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∈ ( mzPoly ‘ 𝐵 ) ) |
| 104 |
|
mzpf |
⊢ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∈ ( mzPoly ‘ 𝐵 ) → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) : ( ℤ ↑m 𝐵 ) ⟶ ℤ ) |
| 105 |
|
ffn |
⊢ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) : ( ℤ ↑m 𝐵 ) ⟶ ℤ → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) Fn ( ℤ ↑m 𝐵 ) ) |
| 106 |
103 104 105
|
3syl |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) Fn ( ℤ ↑m 𝐵 ) ) |
| 107 |
|
mzpresrename |
⊢ ( ( 𝐵 ∈ V ∧ 𝑗 ⊆ 𝐵 ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ∈ ( mzPoly ‘ 𝐵 ) ) |
| 108 |
101 97 91 107
|
syl3anc |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ∈ ( mzPoly ‘ 𝐵 ) ) |
| 109 |
|
mzpf |
⊢ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ∈ ( mzPoly ‘ 𝐵 ) → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) : ( ℤ ↑m 𝐵 ) ⟶ ℤ ) |
| 110 |
|
ffn |
⊢ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) : ( ℤ ↑m 𝐵 ) ⟶ ℤ → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) Fn ( ℤ ↑m 𝐵 ) ) |
| 111 |
108 109 110
|
3syl |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) Fn ( ℤ ↑m 𝐵 ) ) |
| 112 |
|
ofmpteq |
⊢ ( ( ( ℤ ↑m 𝐵 ) ∈ V ∧ ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) Fn ( ℤ ↑m 𝐵 ) ∧ ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) Fn ( ℤ ↑m 𝐵 ) ) → ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) |
| 113 |
100 106 111 112
|
syl3anc |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) |
| 114 |
|
elmapi |
⊢ ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) → 𝑑 : 𝐵 ⟶ ℤ ) |
| 115 |
|
fssres |
⊢ ( ( 𝑑 : 𝐵 ⟶ ℤ ∧ ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ) → ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) : ( ℎ ∪ 𝑗 ) ⟶ ℤ ) |
| 116 |
114 98 115
|
syl2anr |
⊢ ( ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) ∧ 𝑑 ∈ ( ℤ ↑m 𝐵 ) ) → ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) : ( ℎ ∪ 𝑗 ) ⟶ ℤ ) |
| 117 |
|
zex |
⊢ ℤ ∈ V |
| 118 |
117 82
|
elmap |
⊢ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↔ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) : ( ℎ ∪ 𝑗 ) ⟶ ℤ ) |
| 119 |
116 118
|
sylibr |
⊢ ( ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) ∧ 𝑑 ∈ ( ℤ ↑m 𝐵 ) ) → ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ) |
| 120 |
|
reseq1 |
⊢ ( 𝑙 = ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) → ( 𝑙 ↾ ℎ ) = ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ ℎ ) ) |
| 121 |
120
|
fveq2d |
⊢ ( 𝑙 = ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) → ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) = ( 𝑖 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ ℎ ) ) ) |
| 122 |
|
reseq1 |
⊢ ( 𝑙 = ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) → ( 𝑙 ↾ 𝑗 ) = ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ 𝑗 ) ) |
| 123 |
122
|
fveq2d |
⊢ ( 𝑙 = ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) → ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) = ( 𝑘 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ 𝑗 ) ) ) |
| 124 |
121 123
|
oveq12d |
⊢ ( 𝑙 = ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) → ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) = ( ( 𝑖 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ ℎ ) ) + ( 𝑘 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ 𝑗 ) ) ) ) |
| 125 |
|
eqid |
⊢ ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) = ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) |
| 126 |
|
ovex |
⊢ ( ( 𝑖 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ ℎ ) ) + ( 𝑘 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ 𝑗 ) ) ) ∈ V |
| 127 |
124 125 126
|
fvmpt |
⊢ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) → ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) = ( ( 𝑖 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ ℎ ) ) + ( 𝑘 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ 𝑗 ) ) ) ) |
| 128 |
119 127
|
syl |
⊢ ( ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) ∧ 𝑑 ∈ ( ℤ ↑m 𝐵 ) ) → ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) = ( ( 𝑖 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ ℎ ) ) + ( 𝑘 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ 𝑗 ) ) ) ) |
| 129 |
|
resabs1 |
⊢ ( ℎ ⊆ ( ℎ ∪ 𝑗 ) → ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ ℎ ) = ( 𝑑 ↾ ℎ ) ) |
| 130 |
84 129
|
ax-mp |
⊢ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ ℎ ) = ( 𝑑 ↾ ℎ ) |
| 131 |
130
|
fveq2i |
⊢ ( 𝑖 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ ℎ ) ) = ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) |
| 132 |
|
resabs1 |
⊢ ( 𝑗 ⊆ ( ℎ ∪ 𝑗 ) → ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ 𝑗 ) = ( 𝑑 ↾ 𝑗 ) ) |
| 133 |
89 132
|
ax-mp |
⊢ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ 𝑗 ) = ( 𝑑 ↾ 𝑗 ) |
| 134 |
133
|
fveq2i |
⊢ ( 𝑘 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ 𝑗 ) ) = ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) |
| 135 |
131 134
|
oveq12i |
⊢ ( ( 𝑖 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ ℎ ) ) + ( 𝑘 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ 𝑗 ) ) ) = ( ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) |
| 136 |
128 135
|
eqtr2di |
⊢ ( ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) ∧ 𝑑 ∈ ( ℤ ↑m 𝐵 ) ) → ( ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) = ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) |
| 137 |
136
|
mpteq2dva |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) |
| 138 |
113 137
|
eqtrd |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) |
| 139 |
|
fveq1 |
⊢ ( 𝑏 = ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) → ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) = ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) |
| 140 |
139
|
mpteq2dv |
⊢ ( 𝑏 = ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) |
| 141 |
140
|
eqeq2d |
⊢ ( 𝑏 = ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) → ( ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ↔ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ) |
| 142 |
141
|
anbi2d |
⊢ ( 𝑏 = ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) → ( ( ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ↔ ( ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ) ) |
| 143 |
142
|
rspcev |
⊢ ( ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ∧ ( ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) + ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ) → ∃ 𝑏 ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ( ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ) |
| 144 |
95 98 138 143
|
syl12anc |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ∃ 𝑏 ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ( ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ) |
| 145 |
|
mzpmulmpt |
⊢ ( ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) ) ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ∧ ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ) → ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ) |
| 146 |
88 93 145
|
syl2anc |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ) |
| 147 |
|
ofmpteq |
⊢ ( ( ( ℤ ↑m 𝐵 ) ∈ V ∧ ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) Fn ( ℤ ↑m 𝐵 ) ∧ ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) Fn ( ℤ ↑m 𝐵 ) ) → ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) |
| 148 |
100 106 111 147
|
syl3anc |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) |
| 149 |
121 123
|
oveq12d |
⊢ ( 𝑙 = ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) → ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) = ( ( 𝑖 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ ℎ ) ) · ( 𝑘 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ 𝑗 ) ) ) ) |
| 150 |
|
eqid |
⊢ ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) = ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) |
| 151 |
|
ovex |
⊢ ( ( 𝑖 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ ℎ ) ) · ( 𝑘 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ 𝑗 ) ) ) ∈ V |
| 152 |
149 150 151
|
fvmpt |
⊢ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) → ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) = ( ( 𝑖 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ ℎ ) ) · ( 𝑘 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ 𝑗 ) ) ) ) |
| 153 |
119 152
|
syl |
⊢ ( ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) ∧ 𝑑 ∈ ( ℤ ↑m 𝐵 ) ) → ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) = ( ( 𝑖 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ ℎ ) ) · ( 𝑘 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ 𝑗 ) ) ) ) |
| 154 |
131 134
|
oveq12i |
⊢ ( ( 𝑖 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ ℎ ) ) · ( 𝑘 ‘ ( ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ↾ 𝑗 ) ) ) = ( ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) |
| 155 |
153 154
|
eqtr2di |
⊢ ( ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) ∧ 𝑑 ∈ ( ℤ ↑m 𝐵 ) ) → ( ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) = ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) |
| 156 |
155
|
mpteq2dva |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) |
| 157 |
148 156
|
eqtrd |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) |
| 158 |
|
fveq1 |
⊢ ( 𝑏 = ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) → ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) = ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) |
| 159 |
158
|
mpteq2dv |
⊢ ( 𝑏 = ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) |
| 160 |
159
|
eqeq2d |
⊢ ( 𝑏 = ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) → ( ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ↔ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ) |
| 161 |
160
|
anbi2d |
⊢ ( 𝑏 = ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) → ( ( ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ↔ ( ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ) ) |
| 162 |
161
|
rspcev |
⊢ ( ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ∧ ( ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( ( 𝑙 ∈ ( ℤ ↑m ( ℎ ∪ 𝑗 ) ) ↦ ( ( 𝑖 ‘ ( 𝑙 ↾ ℎ ) ) · ( 𝑘 ‘ ( 𝑙 ↾ 𝑗 ) ) ) ) ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ) → ∃ 𝑏 ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ( ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ) |
| 163 |
146 98 157 162
|
syl12anc |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ∃ 𝑏 ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ( ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ) |
| 164 |
|
fveq2 |
⊢ ( 𝑎 = ( ℎ ∪ 𝑗 ) → ( mzPoly ‘ 𝑎 ) = ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ) |
| 165 |
|
sseq1 |
⊢ ( 𝑎 = ( ℎ ∪ 𝑗 ) → ( 𝑎 ⊆ 𝐵 ↔ ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ) ) |
| 166 |
|
reseq2 |
⊢ ( 𝑎 = ( ℎ ∪ 𝑗 ) → ( 𝑑 ↾ 𝑎 ) = ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) |
| 167 |
166
|
fveq2d |
⊢ ( 𝑎 = ( ℎ ∪ 𝑗 ) → ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) = ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) |
| 168 |
167
|
mpteq2dv |
⊢ ( 𝑎 = ( ℎ ∪ 𝑗 ) → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) |
| 169 |
168
|
eqeq2d |
⊢ ( 𝑎 = ( ℎ ∪ 𝑗 ) → ( ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ↔ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ) |
| 170 |
165 169
|
anbi12d |
⊢ ( 𝑎 = ( ℎ ∪ 𝑗 ) → ( ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ( ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ) ) |
| 171 |
164 170
|
rexeqbidv |
⊢ ( 𝑎 = ( ℎ ∪ 𝑗 ) → ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑏 ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ( ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ) ) |
| 172 |
168
|
eqeq2d |
⊢ ( 𝑎 = ( ℎ ∪ 𝑗 ) → ( ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ↔ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ) |
| 173 |
165 172
|
anbi12d |
⊢ ( 𝑎 = ( ℎ ∪ 𝑗 ) → ( ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ( ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ) ) |
| 174 |
164 173
|
rexeqbidv |
⊢ ( 𝑎 = ( ℎ ∪ 𝑗 ) → ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑏 ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ( ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ) ) |
| 175 |
171 174
|
anbi12d |
⊢ ( 𝑎 = ( ℎ ∪ 𝑗 ) → ( ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ↔ ( ∃ 𝑏 ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ( ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ∧ ∃ 𝑏 ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ( ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ) ) ) |
| 176 |
175
|
rspcev |
⊢ ( ( ( ℎ ∪ 𝑗 ) ∈ Fin ∧ ( ∃ 𝑏 ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ( ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ∧ ∃ 𝑏 ∈ ( mzPoly ‘ ( ℎ ∪ 𝑗 ) ) ( ( ℎ ∪ 𝑗 ) ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ( ℎ ∪ 𝑗 ) ) ) ) ) ) ) → ∃ 𝑎 ∈ Fin ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
| 177 |
79 144 163 176
|
syl12anc |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ℎ ⊆ 𝐵 ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ∃ 𝑎 ∈ Fin ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
| 178 |
177
|
adantlrr |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ 𝑗 ⊆ 𝐵 ) ) → ∃ 𝑎 ∈ Fin ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
| 179 |
178
|
adantrrr |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → ∃ 𝑎 ∈ Fin ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
| 180 |
|
simplrr |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) |
| 181 |
|
simprrr |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) |
| 182 |
180 181
|
oveq12d |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → ( 𝑓 ∘f + 𝑔 ) = ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) |
| 183 |
182
|
eqeq1d |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → ( ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ↔ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
| 184 |
183
|
anbi2d |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → ( ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
| 185 |
184
|
rexbidv |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
| 186 |
180 181
|
oveq12d |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → ( 𝑓 ∘f · 𝑔 ) = ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) |
| 187 |
186
|
eqeq1d |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → ( ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ↔ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
| 188 |
187
|
anbi2d |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → ( ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
| 189 |
188
|
rexbidv |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
| 190 |
185 189
|
anbi12d |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → ( ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ↔ ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) ) |
| 191 |
190
|
rexbidv |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → ( ∃ 𝑎 ∈ Fin ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ↔ ∃ 𝑎 ∈ Fin ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f + ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ∘f · ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) ) |
| 192 |
179 191
|
mpbird |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → ∃ 𝑎 ∈ Fin ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
| 193 |
|
r19.40 |
⊢ ( ∃ 𝑎 ∈ Fin ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
| 194 |
192 193
|
syl |
⊢ ( ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) ∧ ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
| 195 |
194
|
exp32 |
⊢ ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) → ( ( 𝑗 ∈ Fin ∧ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ) → ( ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) ) ) |
| 196 |
195
|
rexlimdvv |
⊢ ( ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) ∧ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) → ( ∃ 𝑗 ∈ Fin ∃ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) ) |
| 197 |
196
|
ex |
⊢ ( ( ℎ ∈ Fin ∧ 𝑖 ∈ ( mzPoly ‘ ℎ ) ) → ( ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) → ( ∃ 𝑗 ∈ Fin ∃ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) ) ) |
| 198 |
197
|
rexlimivv |
⊢ ( ∃ ℎ ∈ Fin ∃ 𝑖 ∈ ( mzPoly ‘ ℎ ) ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) → ( ∃ 𝑗 ∈ Fin ∃ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) ) |
| 199 |
198
|
imp |
⊢ ( ( ∃ ℎ ∈ Fin ∃ 𝑖 ∈ ( mzPoly ‘ ℎ ) ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ∧ ∃ 𝑗 ∈ Fin ∃ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
| 200 |
199
|
ad2ant2l |
⊢ ( ( ( 𝑓 : ( ℤ ↑m 𝐵 ) ⟶ ℤ ∧ ∃ ℎ ∈ Fin ∃ 𝑖 ∈ ( mzPoly ‘ ℎ ) ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( 𝑔 : ( ℤ ↑m 𝐵 ) ⟶ ℤ ∧ ∃ 𝑗 ∈ Fin ∃ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
| 201 |
200
|
3adant1 |
⊢ ( ( ⊤ ∧ ( 𝑓 : ( ℤ ↑m 𝐵 ) ⟶ ℤ ∧ ∃ ℎ ∈ Fin ∃ 𝑖 ∈ ( mzPoly ‘ ℎ ) ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( 𝑔 : ( ℤ ↑m 𝐵 ) ⟶ ℤ ∧ ∃ 𝑗 ∈ Fin ∃ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ∧ ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
| 202 |
201
|
simpld |
⊢ ( ( ⊤ ∧ ( 𝑓 : ( ℤ ↑m 𝐵 ) ⟶ ℤ ∧ ∃ ℎ ∈ Fin ∃ 𝑖 ∈ ( mzPoly ‘ ℎ ) ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( 𝑔 : ( ℤ ↑m 𝐵 ) ⟶ ℤ ∧ ∃ 𝑗 ∈ Fin ∃ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
| 203 |
201
|
simprd |
⊢ ( ( ⊤ ∧ ( 𝑓 : ( ℤ ↑m 𝐵 ) ⟶ ℤ ∧ ∃ ℎ ∈ Fin ∃ 𝑖 ∈ ( mzPoly ‘ ℎ ) ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ∧ ( 𝑔 : ( ℤ ↑m 𝐵 ) ⟶ ℤ ∧ ∃ 𝑗 ∈ Fin ∃ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) → ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
| 204 |
|
eqeq1 |
⊢ ( 𝑒 = ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) → ( 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ↔ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
| 205 |
204
|
anbi2d |
⊢ ( 𝑒 = ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) → ( ( 𝑎 ⊆ 𝐵 ∧ 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ( 𝑎 ⊆ 𝐵 ∧ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
| 206 |
205
|
2rexbidv |
⊢ ( 𝑒 = ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( ( ℤ ↑m 𝐵 ) × { 𝑓 } ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
| 207 |
|
eqeq1 |
⊢ ( 𝑒 = ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) → ( 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ↔ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
| 208 |
207
|
anbi2d |
⊢ ( 𝑒 = ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) → ( ( 𝑎 ⊆ 𝐵 ∧ 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ( 𝑎 ⊆ 𝐵 ∧ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
| 209 |
208
|
2rexbidv |
⊢ ( 𝑒 = ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑔 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑔 ‘ 𝑓 ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
| 210 |
|
eqeq1 |
⊢ ( 𝑒 = 𝑓 → ( 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ↔ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
| 211 |
210
|
anbi2d |
⊢ ( 𝑒 = 𝑓 → ( ( 𝑎 ⊆ 𝐵 ∧ 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ( 𝑎 ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
| 212 |
211
|
2rexbidv |
⊢ ( 𝑒 = 𝑓 → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
| 213 |
|
fveq2 |
⊢ ( 𝑎 = ℎ → ( mzPoly ‘ 𝑎 ) = ( mzPoly ‘ ℎ ) ) |
| 214 |
|
sseq1 |
⊢ ( 𝑎 = ℎ → ( 𝑎 ⊆ 𝐵 ↔ ℎ ⊆ 𝐵 ) ) |
| 215 |
|
reseq2 |
⊢ ( 𝑎 = ℎ → ( 𝑑 ↾ 𝑎 ) = ( 𝑑 ↾ ℎ ) ) |
| 216 |
215
|
fveq2d |
⊢ ( 𝑎 = ℎ → ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) = ( 𝑏 ‘ ( 𝑑 ↾ ℎ ) ) ) |
| 217 |
216
|
mpteq2dv |
⊢ ( 𝑎 = ℎ → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ℎ ) ) ) ) |
| 218 |
217
|
eqeq2d |
⊢ ( 𝑎 = ℎ → ( 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ↔ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) |
| 219 |
214 218
|
anbi12d |
⊢ ( 𝑎 = ℎ → ( ( 𝑎 ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ) |
| 220 |
213 219
|
rexeqbidv |
⊢ ( 𝑎 = ℎ → ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑏 ∈ ( mzPoly ‘ ℎ ) ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ) |
| 221 |
|
fveq1 |
⊢ ( 𝑏 = 𝑖 → ( 𝑏 ‘ ( 𝑑 ↾ ℎ ) ) = ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) |
| 222 |
221
|
mpteq2dv |
⊢ ( 𝑏 = 𝑖 → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ℎ ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) |
| 223 |
222
|
eqeq2d |
⊢ ( 𝑏 = 𝑖 → ( 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ℎ ) ) ) ↔ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) |
| 224 |
223
|
anbi2d |
⊢ ( 𝑏 = 𝑖 → ( ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ↔ ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ) |
| 225 |
224
|
cbvrexvw |
⊢ ( ∃ 𝑏 ∈ ( mzPoly ‘ ℎ ) ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ↔ ∃ 𝑖 ∈ ( mzPoly ‘ ℎ ) ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) |
| 226 |
220 225
|
bitrdi |
⊢ ( 𝑎 = ℎ → ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑖 ∈ ( mzPoly ‘ ℎ ) ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ) |
| 227 |
226
|
cbvrexvw |
⊢ ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ ℎ ∈ Fin ∃ 𝑖 ∈ ( mzPoly ‘ ℎ ) ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) |
| 228 |
212 227
|
bitrdi |
⊢ ( 𝑒 = 𝑓 → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ ℎ ∈ Fin ∃ 𝑖 ∈ ( mzPoly ‘ ℎ ) ( ℎ ⊆ 𝐵 ∧ 𝑓 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑖 ‘ ( 𝑑 ↾ ℎ ) ) ) ) ) ) |
| 229 |
|
eqeq1 |
⊢ ( 𝑒 = 𝑔 → ( 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ↔ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
| 230 |
229
|
anbi2d |
⊢ ( 𝑒 = 𝑔 → ( ( 𝑎 ⊆ 𝐵 ∧ 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ( 𝑎 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
| 231 |
230
|
2rexbidv |
⊢ ( 𝑒 = 𝑔 → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
| 232 |
|
fveq2 |
⊢ ( 𝑎 = 𝑗 → ( mzPoly ‘ 𝑎 ) = ( mzPoly ‘ 𝑗 ) ) |
| 233 |
|
sseq1 |
⊢ ( 𝑎 = 𝑗 → ( 𝑎 ⊆ 𝐵 ↔ 𝑗 ⊆ 𝐵 ) ) |
| 234 |
|
reseq2 |
⊢ ( 𝑎 = 𝑗 → ( 𝑑 ↾ 𝑎 ) = ( 𝑑 ↾ 𝑗 ) ) |
| 235 |
234
|
fveq2d |
⊢ ( 𝑎 = 𝑗 → ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) = ( 𝑏 ‘ ( 𝑑 ↾ 𝑗 ) ) ) |
| 236 |
235
|
mpteq2dv |
⊢ ( 𝑎 = 𝑗 → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) |
| 237 |
236
|
eqeq2d |
⊢ ( 𝑎 = 𝑗 → ( 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ↔ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) |
| 238 |
233 237
|
anbi12d |
⊢ ( 𝑎 = 𝑗 → ( ( 𝑎 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) |
| 239 |
232 238
|
rexeqbidv |
⊢ ( 𝑎 = 𝑗 → ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑏 ∈ ( mzPoly ‘ 𝑗 ) ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) |
| 240 |
|
fveq1 |
⊢ ( 𝑏 = 𝑘 → ( 𝑏 ‘ ( 𝑑 ↾ 𝑗 ) ) = ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) |
| 241 |
240
|
mpteq2dv |
⊢ ( 𝑏 = 𝑘 → ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑗 ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) |
| 242 |
241
|
eqeq2d |
⊢ ( 𝑏 = 𝑘 → ( 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ↔ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) |
| 243 |
242
|
anbi2d |
⊢ ( 𝑏 = 𝑘 → ( ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ↔ ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) |
| 244 |
243
|
cbvrexvw |
⊢ ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑗 ) ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ↔ ∃ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) |
| 245 |
239 244
|
bitrdi |
⊢ ( 𝑎 = 𝑗 → ( ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) |
| 246 |
245
|
cbvrexvw |
⊢ ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑗 ∈ Fin ∃ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) |
| 247 |
231 246
|
bitrdi |
⊢ ( 𝑒 = 𝑔 → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑗 ∈ Fin ∃ 𝑘 ∈ ( mzPoly ‘ 𝑗 ) ( 𝑗 ⊆ 𝐵 ∧ 𝑔 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑘 ‘ ( 𝑑 ↾ 𝑗 ) ) ) ) ) ) |
| 248 |
|
eqeq1 |
⊢ ( 𝑒 = ( 𝑓 ∘f + 𝑔 ) → ( 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ↔ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
| 249 |
248
|
anbi2d |
⊢ ( 𝑒 = ( 𝑓 ∘f + 𝑔 ) → ( ( 𝑎 ⊆ 𝐵 ∧ 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
| 250 |
249
|
2rexbidv |
⊢ ( 𝑒 = ( 𝑓 ∘f + 𝑔 ) → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f + 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
| 251 |
|
eqeq1 |
⊢ ( 𝑒 = ( 𝑓 ∘f · 𝑔 ) → ( 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ↔ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
| 252 |
251
|
anbi2d |
⊢ ( 𝑒 = ( 𝑓 ∘f · 𝑔 ) → ( ( 𝑎 ⊆ 𝐵 ∧ 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
| 253 |
252
|
2rexbidv |
⊢ ( 𝑒 = ( 𝑓 ∘f · 𝑔 ) → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ ( 𝑓 ∘f · 𝑔 ) = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
| 254 |
|
eqeq1 |
⊢ ( 𝑒 = 𝐴 → ( 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ↔ 𝐴 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
| 255 |
254
|
anbi2d |
⊢ ( 𝑒 = 𝐴 → ( ( 𝑎 ⊆ 𝐵 ∧ 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ( 𝑎 ⊆ 𝐵 ∧ 𝐴 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
| 256 |
255
|
2rexbidv |
⊢ ( 𝑒 = 𝐴 → ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝑒 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝐴 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) ) |
| 257 |
34 75 202 203 206 209 228 247 250 253 256
|
mzpindd |
⊢ ( ( ⊤ ∧ 𝐴 ∈ ( mzPoly ‘ 𝐵 ) ) → ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝐴 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
| 258 |
2 257
|
mpan |
⊢ ( 𝐴 ∈ ( mzPoly ‘ 𝐵 ) → ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝐴 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ) |
| 259 |
|
reseq1 |
⊢ ( 𝑑 = 𝑐 → ( 𝑑 ↾ 𝑎 ) = ( 𝑐 ↾ 𝑎 ) ) |
| 260 |
259
|
fveq2d |
⊢ ( 𝑑 = 𝑐 → ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) = ( 𝑏 ‘ ( 𝑐 ↾ 𝑎 ) ) ) |
| 261 |
260
|
cbvmptv |
⊢ ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) = ( 𝑐 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑐 ↾ 𝑎 ) ) ) |
| 262 |
261
|
eqeq2i |
⊢ ( 𝐴 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ↔ 𝐴 = ( 𝑐 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑐 ↾ 𝑎 ) ) ) ) |
| 263 |
262
|
anbi2i |
⊢ ( ( 𝑎 ⊆ 𝐵 ∧ 𝐴 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ( 𝑎 ⊆ 𝐵 ∧ 𝐴 = ( 𝑐 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑐 ↾ 𝑎 ) ) ) ) ) |
| 264 |
263
|
2rexbii |
⊢ ( ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝐴 = ( 𝑑 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑑 ↾ 𝑎 ) ) ) ) ↔ ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝐴 = ( 𝑐 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑐 ↾ 𝑎 ) ) ) ) ) |
| 265 |
258 264
|
sylib |
⊢ ( 𝐴 ∈ ( mzPoly ‘ 𝐵 ) → ∃ 𝑎 ∈ Fin ∃ 𝑏 ∈ ( mzPoly ‘ 𝑎 ) ( 𝑎 ⊆ 𝐵 ∧ 𝐴 = ( 𝑐 ∈ ( ℤ ↑m 𝐵 ) ↦ ( 𝑏 ‘ ( 𝑐 ↾ 𝑎 ) ) ) ) ) |