Metamath Proof Explorer


Theorem r19.40

Description: Restricted quantifier version of Theorem 19.40 of Margaris p. 90. (Contributed by NM, 2-Apr-2004)

Ref Expression
Assertion r19.40 ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∃ 𝑥𝐴 𝜑 ∧ ∃ 𝑥𝐴 𝜓 ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝜑𝜓 ) → 𝜑 )
2 1 reximi ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) → ∃ 𝑥𝐴 𝜑 )
3 simpr ( ( 𝜑𝜓 ) → 𝜓 )
4 3 reximi ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) → ∃ 𝑥𝐴 𝜓 )
5 2 4 jca ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∃ 𝑥𝐴 𝜑 ∧ ∃ 𝑥𝐴 𝜓 ) )