Metamath Proof Explorer


Theorem elnn0rabdioph

Description: Diophantine set builder for nonnegativity constraints. The first builder which uses a witness variable internally; an expression is nonnegative if there is a nonnegative integer equal to it. (Contributed by Stefan O'Rear, 11-Oct-2014)

Ref Expression
Assertion elnn0rabdioph N 0 t 1 N A mzPoly 1 N t 0 1 N | A 0 Dioph N

Proof

Step Hyp Ref Expression
1 risset A 0 b 0 b = A
2 1 rabbii t 0 1 N | A 0 = t 0 1 N | b 0 b = A
3 2 a1i N 0 t 1 N A mzPoly 1 N t 0 1 N | A 0 = t 0 1 N | b 0 b = A
4 nfcv _ t 0 1 N
5 nfcv _ a 0 1 N
6 nfv a b 0 b = A
7 nfcv _ t 0
8 nfcsb1v _ t a / t A
9 8 nfeq2 t b = a / t A
10 7 9 nfrex t b 0 b = a / t A
11 csbeq1a t = a A = a / t A
12 11 eqeq2d t = a b = A b = a / t A
13 12 rexbidv t = a b 0 b = A b 0 b = a / t A
14 4 5 6 10 13 cbvrabw t 0 1 N | b 0 b = A = a 0 1 N | b 0 b = a / t A
15 3 14 eqtrdi N 0 t 1 N A mzPoly 1 N t 0 1 N | A 0 = a 0 1 N | b 0 b = a / t A
16 peano2nn0 N 0 N + 1 0
17 16 adantr N 0 t 1 N A mzPoly 1 N N + 1 0
18 ovex 1 N + 1 V
19 nn0p1nn N 0 N + 1
20 elfz1end N + 1 N + 1 1 N + 1
21 19 20 sylib N 0 N + 1 1 N + 1
22 21 adantr N 0 t 1 N A mzPoly 1 N N + 1 1 N + 1
23 mzpproj 1 N + 1 V N + 1 1 N + 1 c 1 N + 1 c N + 1 mzPoly 1 N + 1
24 18 22 23 sylancr N 0 t 1 N A mzPoly 1 N c 1 N + 1 c N + 1 mzPoly 1 N + 1
25 eqid N + 1 = N + 1
26 25 rabdiophlem2 N 0 t 1 N A mzPoly 1 N c 1 N + 1 c 1 N / t A mzPoly 1 N + 1
27 eqrabdioph N + 1 0 c 1 N + 1 c N + 1 mzPoly 1 N + 1 c 1 N + 1 c 1 N / t A mzPoly 1 N + 1 c 0 1 N + 1 | c N + 1 = c 1 N / t A Dioph N + 1
28 17 24 26 27 syl3anc N 0 t 1 N A mzPoly 1 N c 0 1 N + 1 | c N + 1 = c 1 N / t A Dioph N + 1
29 eqeq1 b = c N + 1 b = a / t A c N + 1 = a / t A
30 csbeq1 a = c 1 N a / t A = c 1 N / t A
31 30 eqeq2d a = c 1 N c N + 1 = a / t A c N + 1 = c 1 N / t A
32 25 29 31 rexrabdioph N 0 c 0 1 N + 1 | c N + 1 = c 1 N / t A Dioph N + 1 a 0 1 N | b 0 b = a / t A Dioph N
33 28 32 syldan N 0 t 1 N A mzPoly 1 N a 0 1 N | b 0 b = a / t A Dioph N
34 15 33 eqeltrd N 0 t 1 N A mzPoly 1 N t 0 1 N | A 0 Dioph N