Step |
Hyp |
Ref |
Expression |
1 |
|
risset |
⊢ ( 𝐴 ∈ ℕ0 ↔ ∃ 𝑏 ∈ ℕ0 𝑏 = 𝐴 ) |
2 |
1
|
rabbii |
⊢ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ 𝐴 ∈ ℕ0 } = { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑏 ∈ ℕ0 𝑏 = 𝐴 } |
3 |
2
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ 𝐴 ∈ ℕ0 } = { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑏 ∈ ℕ0 𝑏 = 𝐴 } ) |
4 |
|
nfcv |
⊢ Ⅎ 𝑡 ( ℕ0 ↑m ( 1 ... 𝑁 ) ) |
5 |
|
nfcv |
⊢ Ⅎ 𝑎 ( ℕ0 ↑m ( 1 ... 𝑁 ) ) |
6 |
|
nfv |
⊢ Ⅎ 𝑎 ∃ 𝑏 ∈ ℕ0 𝑏 = 𝐴 |
7 |
|
nfcv |
⊢ Ⅎ 𝑡 ℕ0 |
8 |
|
nfcsb1v |
⊢ Ⅎ 𝑡 ⦋ 𝑎 / 𝑡 ⦌ 𝐴 |
9 |
8
|
nfeq2 |
⊢ Ⅎ 𝑡 𝑏 = ⦋ 𝑎 / 𝑡 ⦌ 𝐴 |
10 |
7 9
|
nfrex |
⊢ Ⅎ 𝑡 ∃ 𝑏 ∈ ℕ0 𝑏 = ⦋ 𝑎 / 𝑡 ⦌ 𝐴 |
11 |
|
csbeq1a |
⊢ ( 𝑡 = 𝑎 → 𝐴 = ⦋ 𝑎 / 𝑡 ⦌ 𝐴 ) |
12 |
11
|
eqeq2d |
⊢ ( 𝑡 = 𝑎 → ( 𝑏 = 𝐴 ↔ 𝑏 = ⦋ 𝑎 / 𝑡 ⦌ 𝐴 ) ) |
13 |
12
|
rexbidv |
⊢ ( 𝑡 = 𝑎 → ( ∃ 𝑏 ∈ ℕ0 𝑏 = 𝐴 ↔ ∃ 𝑏 ∈ ℕ0 𝑏 = ⦋ 𝑎 / 𝑡 ⦌ 𝐴 ) ) |
14 |
4 5 6 10 13
|
cbvrabw |
⊢ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑏 ∈ ℕ0 𝑏 = 𝐴 } = { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑏 ∈ ℕ0 𝑏 = ⦋ 𝑎 / 𝑡 ⦌ 𝐴 } |
15 |
3 14
|
eqtrdi |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ 𝐴 ∈ ℕ0 } = { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑏 ∈ ℕ0 𝑏 = ⦋ 𝑎 / 𝑡 ⦌ 𝐴 } ) |
16 |
|
peano2nn0 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
17 |
16
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → ( 𝑁 + 1 ) ∈ ℕ0 ) |
18 |
|
ovex |
⊢ ( 1 ... ( 𝑁 + 1 ) ) ∈ V |
19 |
|
nn0p1nn |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ ) |
20 |
|
elfz1end |
⊢ ( ( 𝑁 + 1 ) ∈ ℕ ↔ ( 𝑁 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
21 |
19 20
|
sylib |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → ( 𝑁 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
23 |
|
mzpproj |
⊢ ( ( ( 1 ... ( 𝑁 + 1 ) ) ∈ V ∧ ( 𝑁 + 1 ) ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝑐 ∈ ( ℤ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ↦ ( 𝑐 ‘ ( 𝑁 + 1 ) ) ) ∈ ( mzPoly ‘ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
24 |
18 22 23
|
sylancr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → ( 𝑐 ∈ ( ℤ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ↦ ( 𝑐 ‘ ( 𝑁 + 1 ) ) ) ∈ ( mzPoly ‘ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
25 |
|
eqid |
⊢ ( 𝑁 + 1 ) = ( 𝑁 + 1 ) |
26 |
25
|
rabdiophlem2 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → ( 𝑐 ∈ ( ℤ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ↦ ⦋ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) / 𝑡 ⦌ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
27 |
|
eqrabdioph |
⊢ ( ( ( 𝑁 + 1 ) ∈ ℕ0 ∧ ( 𝑐 ∈ ( ℤ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ↦ ( 𝑐 ‘ ( 𝑁 + 1 ) ) ) ∈ ( mzPoly ‘ ( 1 ... ( 𝑁 + 1 ) ) ) ∧ ( 𝑐 ∈ ( ℤ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ↦ ⦋ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) / 𝑡 ⦌ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... ( 𝑁 + 1 ) ) ) ) → { 𝑐 ∈ ( ℕ0 ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ∣ ( 𝑐 ‘ ( 𝑁 + 1 ) ) = ⦋ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) / 𝑡 ⦌ 𝐴 } ∈ ( Dioph ‘ ( 𝑁 + 1 ) ) ) |
28 |
17 24 26 27
|
syl3anc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → { 𝑐 ∈ ( ℕ0 ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ∣ ( 𝑐 ‘ ( 𝑁 + 1 ) ) = ⦋ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) / 𝑡 ⦌ 𝐴 } ∈ ( Dioph ‘ ( 𝑁 + 1 ) ) ) |
29 |
|
eqeq1 |
⊢ ( 𝑏 = ( 𝑐 ‘ ( 𝑁 + 1 ) ) → ( 𝑏 = ⦋ 𝑎 / 𝑡 ⦌ 𝐴 ↔ ( 𝑐 ‘ ( 𝑁 + 1 ) ) = ⦋ 𝑎 / 𝑡 ⦌ 𝐴 ) ) |
30 |
|
csbeq1 |
⊢ ( 𝑎 = ( 𝑐 ↾ ( 1 ... 𝑁 ) ) → ⦋ 𝑎 / 𝑡 ⦌ 𝐴 = ⦋ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) / 𝑡 ⦌ 𝐴 ) |
31 |
30
|
eqeq2d |
⊢ ( 𝑎 = ( 𝑐 ↾ ( 1 ... 𝑁 ) ) → ( ( 𝑐 ‘ ( 𝑁 + 1 ) ) = ⦋ 𝑎 / 𝑡 ⦌ 𝐴 ↔ ( 𝑐 ‘ ( 𝑁 + 1 ) ) = ⦋ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) / 𝑡 ⦌ 𝐴 ) ) |
32 |
25 29 31
|
rexrabdioph |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ { 𝑐 ∈ ( ℕ0 ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ∣ ( 𝑐 ‘ ( 𝑁 + 1 ) ) = ⦋ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) / 𝑡 ⦌ 𝐴 } ∈ ( Dioph ‘ ( 𝑁 + 1 ) ) ) → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑏 ∈ ℕ0 𝑏 = ⦋ 𝑎 / 𝑡 ⦌ 𝐴 } ∈ ( Dioph ‘ 𝑁 ) ) |
33 |
28 32
|
syldan |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑏 ∈ ℕ0 𝑏 = ⦋ 𝑎 / 𝑡 ⦌ 𝐴 } ∈ ( Dioph ‘ 𝑁 ) ) |
34 |
15 33
|
eqeltrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ 𝐴 ∈ ℕ0 } ∈ ( Dioph ‘ 𝑁 ) ) |