| Step | Hyp | Ref | Expression | 
						
							| 1 |  | risset | ⊢ ( 𝐴  ∈  ℕ0  ↔  ∃ 𝑏  ∈  ℕ0 𝑏  =  𝐴 ) | 
						
							| 2 | 1 | rabbii | ⊢ { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  𝐴  ∈  ℕ0 }  =  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑏  ∈  ℕ0 𝑏  =  𝐴 } | 
						
							| 3 | 2 | a1i | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝐴 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) ) )  →  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  𝐴  ∈  ℕ0 }  =  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑏  ∈  ℕ0 𝑏  =  𝐴 } ) | 
						
							| 4 |  | nfcv | ⊢ Ⅎ 𝑡 ( ℕ0  ↑m  ( 1 ... 𝑁 ) ) | 
						
							| 5 |  | nfcv | ⊢ Ⅎ 𝑎 ( ℕ0  ↑m  ( 1 ... 𝑁 ) ) | 
						
							| 6 |  | nfv | ⊢ Ⅎ 𝑎 ∃ 𝑏  ∈  ℕ0 𝑏  =  𝐴 | 
						
							| 7 |  | nfcv | ⊢ Ⅎ 𝑡 ℕ0 | 
						
							| 8 |  | nfcsb1v | ⊢ Ⅎ 𝑡 ⦋ 𝑎  /  𝑡 ⦌ 𝐴 | 
						
							| 9 | 8 | nfeq2 | ⊢ Ⅎ 𝑡 𝑏  =  ⦋ 𝑎  /  𝑡 ⦌ 𝐴 | 
						
							| 10 | 7 9 | nfrexw | ⊢ Ⅎ 𝑡 ∃ 𝑏  ∈  ℕ0 𝑏  =  ⦋ 𝑎  /  𝑡 ⦌ 𝐴 | 
						
							| 11 |  | csbeq1a | ⊢ ( 𝑡  =  𝑎  →  𝐴  =  ⦋ 𝑎  /  𝑡 ⦌ 𝐴 ) | 
						
							| 12 | 11 | eqeq2d | ⊢ ( 𝑡  =  𝑎  →  ( 𝑏  =  𝐴  ↔  𝑏  =  ⦋ 𝑎  /  𝑡 ⦌ 𝐴 ) ) | 
						
							| 13 | 12 | rexbidv | ⊢ ( 𝑡  =  𝑎  →  ( ∃ 𝑏  ∈  ℕ0 𝑏  =  𝐴  ↔  ∃ 𝑏  ∈  ℕ0 𝑏  =  ⦋ 𝑎  /  𝑡 ⦌ 𝐴 ) ) | 
						
							| 14 | 4 5 6 10 13 | cbvrabw | ⊢ { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑏  ∈  ℕ0 𝑏  =  𝐴 }  =  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑏  ∈  ℕ0 𝑏  =  ⦋ 𝑎  /  𝑡 ⦌ 𝐴 } | 
						
							| 15 | 3 14 | eqtrdi | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝐴 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) ) )  →  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  𝐴  ∈  ℕ0 }  =  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑏  ∈  ℕ0 𝑏  =  ⦋ 𝑎  /  𝑡 ⦌ 𝐴 } ) | 
						
							| 16 |  | peano2nn0 | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℕ0 ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝐴 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) ) )  →  ( 𝑁  +  1 )  ∈  ℕ0 ) | 
						
							| 18 |  | ovex | ⊢ ( 1 ... ( 𝑁  +  1 ) )  ∈  V | 
						
							| 19 |  | nn0p1nn | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℕ ) | 
						
							| 20 |  | elfz1end | ⊢ ( ( 𝑁  +  1 )  ∈  ℕ  ↔  ( 𝑁  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 21 | 19 20 | sylib | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝐴 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) ) )  →  ( 𝑁  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 23 |  | mzpproj | ⊢ ( ( ( 1 ... ( 𝑁  +  1 ) )  ∈  V  ∧  ( 𝑁  +  1 )  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( 𝑐  ∈  ( ℤ  ↑m  ( 1 ... ( 𝑁  +  1 ) ) )  ↦  ( 𝑐 ‘ ( 𝑁  +  1 ) ) )  ∈  ( mzPoly ‘ ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 24 | 18 22 23 | sylancr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝐴 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) ) )  →  ( 𝑐  ∈  ( ℤ  ↑m  ( 1 ... ( 𝑁  +  1 ) ) )  ↦  ( 𝑐 ‘ ( 𝑁  +  1 ) ) )  ∈  ( mzPoly ‘ ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 25 |  | eqid | ⊢ ( 𝑁  +  1 )  =  ( 𝑁  +  1 ) | 
						
							| 26 | 25 | rabdiophlem2 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝐴 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) ) )  →  ( 𝑐  ∈  ( ℤ  ↑m  ( 1 ... ( 𝑁  +  1 ) ) )  ↦  ⦋ ( 𝑐  ↾  ( 1 ... 𝑁 ) )  /  𝑡 ⦌ 𝐴 )  ∈  ( mzPoly ‘ ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 27 |  | eqrabdioph | ⊢ ( ( ( 𝑁  +  1 )  ∈  ℕ0  ∧  ( 𝑐  ∈  ( ℤ  ↑m  ( 1 ... ( 𝑁  +  1 ) ) )  ↦  ( 𝑐 ‘ ( 𝑁  +  1 ) ) )  ∈  ( mzPoly ‘ ( 1 ... ( 𝑁  +  1 ) ) )  ∧  ( 𝑐  ∈  ( ℤ  ↑m  ( 1 ... ( 𝑁  +  1 ) ) )  ↦  ⦋ ( 𝑐  ↾  ( 1 ... 𝑁 ) )  /  𝑡 ⦌ 𝐴 )  ∈  ( mzPoly ‘ ( 1 ... ( 𝑁  +  1 ) ) ) )  →  { 𝑐  ∈  ( ℕ0  ↑m  ( 1 ... ( 𝑁  +  1 ) ) )  ∣  ( 𝑐 ‘ ( 𝑁  +  1 ) )  =  ⦋ ( 𝑐  ↾  ( 1 ... 𝑁 ) )  /  𝑡 ⦌ 𝐴 }  ∈  ( Dioph ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 28 | 17 24 26 27 | syl3anc | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝐴 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) ) )  →  { 𝑐  ∈  ( ℕ0  ↑m  ( 1 ... ( 𝑁  +  1 ) ) )  ∣  ( 𝑐 ‘ ( 𝑁  +  1 ) )  =  ⦋ ( 𝑐  ↾  ( 1 ... 𝑁 ) )  /  𝑡 ⦌ 𝐴 }  ∈  ( Dioph ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 29 |  | eqeq1 | ⊢ ( 𝑏  =  ( 𝑐 ‘ ( 𝑁  +  1 ) )  →  ( 𝑏  =  ⦋ 𝑎  /  𝑡 ⦌ 𝐴  ↔  ( 𝑐 ‘ ( 𝑁  +  1 ) )  =  ⦋ 𝑎  /  𝑡 ⦌ 𝐴 ) ) | 
						
							| 30 |  | csbeq1 | ⊢ ( 𝑎  =  ( 𝑐  ↾  ( 1 ... 𝑁 ) )  →  ⦋ 𝑎  /  𝑡 ⦌ 𝐴  =  ⦋ ( 𝑐  ↾  ( 1 ... 𝑁 ) )  /  𝑡 ⦌ 𝐴 ) | 
						
							| 31 | 30 | eqeq2d | ⊢ ( 𝑎  =  ( 𝑐  ↾  ( 1 ... 𝑁 ) )  →  ( ( 𝑐 ‘ ( 𝑁  +  1 ) )  =  ⦋ 𝑎  /  𝑡 ⦌ 𝐴  ↔  ( 𝑐 ‘ ( 𝑁  +  1 ) )  =  ⦋ ( 𝑐  ↾  ( 1 ... 𝑁 ) )  /  𝑡 ⦌ 𝐴 ) ) | 
						
							| 32 | 25 29 31 | rexrabdioph | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  { 𝑐  ∈  ( ℕ0  ↑m  ( 1 ... ( 𝑁  +  1 ) ) )  ∣  ( 𝑐 ‘ ( 𝑁  +  1 ) )  =  ⦋ ( 𝑐  ↾  ( 1 ... 𝑁 ) )  /  𝑡 ⦌ 𝐴 }  ∈  ( Dioph ‘ ( 𝑁  +  1 ) ) )  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑏  ∈  ℕ0 𝑏  =  ⦋ 𝑎  /  𝑡 ⦌ 𝐴 }  ∈  ( Dioph ‘ 𝑁 ) ) | 
						
							| 33 | 28 32 | syldan | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝐴 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) ) )  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑏  ∈  ℕ0 𝑏  =  ⦋ 𝑎  /  𝑡 ⦌ 𝐴 }  ∈  ( Dioph ‘ 𝑁 ) ) | 
						
							| 34 | 15 33 | eqeltrd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝐴 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) ) )  →  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  𝐴  ∈  ℕ0 }  ∈  ( Dioph ‘ 𝑁 ) ) |