| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rexrabdioph.1 |
⊢ 𝑀 = ( 𝑁 + 1 ) |
| 2 |
|
rexrabdioph.2 |
⊢ ( 𝑣 = ( 𝑡 ‘ 𝑀 ) → ( 𝜓 ↔ 𝜒 ) ) |
| 3 |
|
rexrabdioph.3 |
⊢ ( 𝑢 = ( 𝑡 ↾ ( 1 ... 𝑁 ) ) → ( 𝜒 ↔ 𝜑 ) ) |
| 4 |
|
df-rab |
⊢ { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑏 ∈ ℕ0 [ 𝑏 / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 } = { 𝑎 ∣ ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ ∃ 𝑏 ∈ ℕ0 [ 𝑏 / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 ) } |
| 5 |
|
dfsbcq |
⊢ ( 𝑏 = 𝑐 → ( [ 𝑏 / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 ↔ [ 𝑐 / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 ) ) |
| 6 |
5
|
cbvrexvw |
⊢ ( ∃ 𝑏 ∈ ℕ0 [ 𝑏 / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 ↔ ∃ 𝑐 ∈ ℕ0 [ 𝑐 / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 ) |
| 7 |
6
|
anbi2i |
⊢ ( ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ ∃ 𝑏 ∈ ℕ0 [ 𝑏 / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 ) ↔ ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ ∃ 𝑐 ∈ ℕ0 [ 𝑐 / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 ) ) |
| 8 |
|
r19.42v |
⊢ ( ∃ 𝑐 ∈ ℕ0 ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ [ 𝑐 / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 ) ↔ ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ ∃ 𝑐 ∈ ℕ0 [ 𝑐 / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 ) ) |
| 9 |
7 8
|
bitr4i |
⊢ ( ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ ∃ 𝑏 ∈ ℕ0 [ 𝑏 / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 ) ↔ ∃ 𝑐 ∈ ℕ0 ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ [ 𝑐 / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 ) ) |
| 10 |
|
simpll |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) → 𝑁 ∈ ℕ0 ) |
| 11 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) → 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) |
| 12 |
|
simplr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) → 𝑐 ∈ ℕ0 ) |
| 13 |
1
|
mapfzcons |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ 𝑐 ∈ ℕ0 ) → ( 𝑎 ∪ { 〈 𝑀 , 𝑐 〉 } ) ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ) |
| 14 |
10 11 12 13
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) → ( 𝑎 ∪ { 〈 𝑀 , 𝑐 〉 } ) ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ) |
| 15 |
14
|
adantrr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ [ 𝑐 / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 ) ) → ( 𝑎 ∪ { 〈 𝑀 , 𝑐 〉 } ) ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ) |
| 16 |
1
|
mapfzcons2 |
⊢ ( ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ 𝑐 ∈ ℕ0 ) → ( ( 𝑎 ∪ { 〈 𝑀 , 𝑐 〉 } ) ‘ 𝑀 ) = 𝑐 ) |
| 17 |
11 12 16
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) → ( ( 𝑎 ∪ { 〈 𝑀 , 𝑐 〉 } ) ‘ 𝑀 ) = 𝑐 ) |
| 18 |
17
|
eqcomd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) → 𝑐 = ( ( 𝑎 ∪ { 〈 𝑀 , 𝑐 〉 } ) ‘ 𝑀 ) ) |
| 19 |
1
|
mapfzcons1 |
⊢ ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) → ( ( 𝑎 ∪ { 〈 𝑀 , 𝑐 〉 } ) ↾ ( 1 ... 𝑁 ) ) = 𝑎 ) |
| 20 |
19
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) → ( ( 𝑎 ∪ { 〈 𝑀 , 𝑐 〉 } ) ↾ ( 1 ... 𝑁 ) ) = 𝑎 ) |
| 21 |
20
|
eqcomd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) → 𝑎 = ( ( 𝑎 ∪ { 〈 𝑀 , 𝑐 〉 } ) ↾ ( 1 ... 𝑁 ) ) ) |
| 22 |
21
|
sbceq1d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) → ( [ 𝑎 / 𝑢 ] 𝜓 ↔ [ ( ( 𝑎 ∪ { 〈 𝑀 , 𝑐 〉 } ) ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ) ) |
| 23 |
18 22
|
sbceqbid |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) → ( [ 𝑐 / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 ↔ [ ( ( 𝑎 ∪ { 〈 𝑀 , 𝑐 〉 } ) ‘ 𝑀 ) / 𝑣 ] [ ( ( 𝑎 ∪ { 〈 𝑀 , 𝑐 〉 } ) ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ) ) |
| 24 |
23
|
biimpd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) → ( [ 𝑐 / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 → [ ( ( 𝑎 ∪ { 〈 𝑀 , 𝑐 〉 } ) ‘ 𝑀 ) / 𝑣 ] [ ( ( 𝑎 ∪ { 〈 𝑀 , 𝑐 〉 } ) ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ) ) |
| 25 |
24
|
impr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ [ 𝑐 / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 ) ) → [ ( ( 𝑎 ∪ { 〈 𝑀 , 𝑐 〉 } ) ‘ 𝑀 ) / 𝑣 ] [ ( ( 𝑎 ∪ { 〈 𝑀 , 𝑐 〉 } ) ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ) |
| 26 |
21
|
adantrr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ [ 𝑐 / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 ) ) → 𝑎 = ( ( 𝑎 ∪ { 〈 𝑀 , 𝑐 〉 } ) ↾ ( 1 ... 𝑁 ) ) ) |
| 27 |
|
fveq1 |
⊢ ( 𝑏 = ( 𝑎 ∪ { 〈 𝑀 , 𝑐 〉 } ) → ( 𝑏 ‘ 𝑀 ) = ( ( 𝑎 ∪ { 〈 𝑀 , 𝑐 〉 } ) ‘ 𝑀 ) ) |
| 28 |
|
reseq1 |
⊢ ( 𝑏 = ( 𝑎 ∪ { 〈 𝑀 , 𝑐 〉 } ) → ( 𝑏 ↾ ( 1 ... 𝑁 ) ) = ( ( 𝑎 ∪ { 〈 𝑀 , 𝑐 〉 } ) ↾ ( 1 ... 𝑁 ) ) ) |
| 29 |
28
|
sbceq1d |
⊢ ( 𝑏 = ( 𝑎 ∪ { 〈 𝑀 , 𝑐 〉 } ) → ( [ ( 𝑏 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ↔ [ ( ( 𝑎 ∪ { 〈 𝑀 , 𝑐 〉 } ) ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ) ) |
| 30 |
27 29
|
sbceqbid |
⊢ ( 𝑏 = ( 𝑎 ∪ { 〈 𝑀 , 𝑐 〉 } ) → ( [ ( 𝑏 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑏 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ↔ [ ( ( 𝑎 ∪ { 〈 𝑀 , 𝑐 〉 } ) ‘ 𝑀 ) / 𝑣 ] [ ( ( 𝑎 ∪ { 〈 𝑀 , 𝑐 〉 } ) ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ) ) |
| 31 |
28
|
eqeq2d |
⊢ ( 𝑏 = ( 𝑎 ∪ { 〈 𝑀 , 𝑐 〉 } ) → ( 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ↔ 𝑎 = ( ( 𝑎 ∪ { 〈 𝑀 , 𝑐 〉 } ) ↾ ( 1 ... 𝑁 ) ) ) ) |
| 32 |
30 31
|
anbi12d |
⊢ ( 𝑏 = ( 𝑎 ∪ { 〈 𝑀 , 𝑐 〉 } ) → ( ( [ ( 𝑏 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑏 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ↔ ( [ ( ( 𝑎 ∪ { 〈 𝑀 , 𝑐 〉 } ) ‘ 𝑀 ) / 𝑣 ] [ ( ( 𝑎 ∪ { 〈 𝑀 , 𝑐 〉 } ) ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ∧ 𝑎 = ( ( 𝑎 ∪ { 〈 𝑀 , 𝑐 〉 } ) ↾ ( 1 ... 𝑁 ) ) ) ) ) |
| 33 |
32
|
rspcev |
⊢ ( ( ( 𝑎 ∪ { 〈 𝑀 , 𝑐 〉 } ) ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∧ ( [ ( ( 𝑎 ∪ { 〈 𝑀 , 𝑐 〉 } ) ‘ 𝑀 ) / 𝑣 ] [ ( ( 𝑎 ∪ { 〈 𝑀 , 𝑐 〉 } ) ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ∧ 𝑎 = ( ( 𝑎 ∪ { 〈 𝑀 , 𝑐 〉 } ) ↾ ( 1 ... 𝑁 ) ) ) ) → ∃ 𝑏 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ( [ ( 𝑏 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑏 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ) |
| 34 |
15 25 26 33
|
syl12anc |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ [ 𝑐 / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 ) ) → ∃ 𝑏 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ( [ ( 𝑏 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑏 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ) |
| 35 |
34
|
rexlimdva2 |
⊢ ( 𝑁 ∈ ℕ0 → ( ∃ 𝑐 ∈ ℕ0 ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ [ 𝑐 / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 ) → ∃ 𝑏 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ( [ ( 𝑏 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑏 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ) ) |
| 36 |
|
elmapi |
⊢ ( 𝑏 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) → 𝑏 : ( 1 ... 𝑀 ) ⟶ ℕ0 ) |
| 37 |
|
nn0p1nn |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ ) |
| 38 |
1 37
|
eqeltrid |
⊢ ( 𝑁 ∈ ℕ0 → 𝑀 ∈ ℕ ) |
| 39 |
|
elfz1end |
⊢ ( 𝑀 ∈ ℕ ↔ 𝑀 ∈ ( 1 ... 𝑀 ) ) |
| 40 |
38 39
|
sylib |
⊢ ( 𝑁 ∈ ℕ0 → 𝑀 ∈ ( 1 ... 𝑀 ) ) |
| 41 |
|
ffvelcdm |
⊢ ( ( 𝑏 : ( 1 ... 𝑀 ) ⟶ ℕ0 ∧ 𝑀 ∈ ( 1 ... 𝑀 ) ) → ( 𝑏 ‘ 𝑀 ) ∈ ℕ0 ) |
| 42 |
36 40 41
|
syl2anr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑏 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ) → ( 𝑏 ‘ 𝑀 ) ∈ ℕ0 ) |
| 43 |
42
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑏 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ) ∧ ( [ ( 𝑏 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑏 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ) → ( 𝑏 ‘ 𝑀 ) ∈ ℕ0 ) |
| 44 |
|
simprr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑏 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ) ∧ ( [ ( 𝑏 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑏 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ) → 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) |
| 45 |
1
|
mapfzcons1cl |
⊢ ( 𝑏 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) → ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) |
| 46 |
45
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑏 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ) ∧ ( [ ( 𝑏 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑏 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ) → ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) |
| 47 |
44 46
|
eqeltrd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑏 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ) ∧ ( [ ( 𝑏 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑏 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ) → 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) |
| 48 |
|
simprl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑏 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ) ∧ ( [ ( 𝑏 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑏 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ) → [ ( 𝑏 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑏 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ) |
| 49 |
|
dfsbcq |
⊢ ( 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) → ( [ 𝑎 / 𝑢 ] 𝜓 ↔ [ ( 𝑏 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ) ) |
| 50 |
49
|
sbcbidv |
⊢ ( 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) → ( [ ( 𝑏 ‘ 𝑀 ) / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 ↔ [ ( 𝑏 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑏 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ) ) |
| 51 |
50
|
ad2antll |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑏 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ) ∧ ( [ ( 𝑏 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑏 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ) → ( [ ( 𝑏 ‘ 𝑀 ) / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 ↔ [ ( 𝑏 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑏 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ) ) |
| 52 |
48 51
|
mpbird |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑏 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ) ∧ ( [ ( 𝑏 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑏 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ) → [ ( 𝑏 ‘ 𝑀 ) / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 ) |
| 53 |
|
dfsbcq |
⊢ ( 𝑐 = ( 𝑏 ‘ 𝑀 ) → ( [ 𝑐 / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 ↔ [ ( 𝑏 ‘ 𝑀 ) / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 ) ) |
| 54 |
53
|
anbi2d |
⊢ ( 𝑐 = ( 𝑏 ‘ 𝑀 ) → ( ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ [ 𝑐 / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 ) ↔ ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ [ ( 𝑏 ‘ 𝑀 ) / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 ) ) ) |
| 55 |
54
|
rspcev |
⊢ ( ( ( 𝑏 ‘ 𝑀 ) ∈ ℕ0 ∧ ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ [ ( 𝑏 ‘ 𝑀 ) / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 ) ) → ∃ 𝑐 ∈ ℕ0 ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ [ 𝑐 / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 ) ) |
| 56 |
43 47 52 55
|
syl12anc |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑏 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ) ∧ ( [ ( 𝑏 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑏 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ) → ∃ 𝑐 ∈ ℕ0 ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ [ 𝑐 / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 ) ) |
| 57 |
56
|
rexlimdva2 |
⊢ ( 𝑁 ∈ ℕ0 → ( ∃ 𝑏 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ( [ ( 𝑏 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑏 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) → ∃ 𝑐 ∈ ℕ0 ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ [ 𝑐 / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 ) ) ) |
| 58 |
35 57
|
impbid |
⊢ ( 𝑁 ∈ ℕ0 → ( ∃ 𝑐 ∈ ℕ0 ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ [ 𝑐 / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 ) ↔ ∃ 𝑏 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ( [ ( 𝑏 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑏 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ) ) |
| 59 |
9 58
|
bitrid |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ ∃ 𝑏 ∈ ℕ0 [ 𝑏 / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 ) ↔ ∃ 𝑏 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ( [ ( 𝑏 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑏 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ) ) |
| 60 |
59
|
abbidv |
⊢ ( 𝑁 ∈ ℕ0 → { 𝑎 ∣ ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ ∃ 𝑏 ∈ ℕ0 [ 𝑏 / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 ) } = { 𝑎 ∣ ∃ 𝑏 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ( [ ( 𝑏 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑏 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) } ) |
| 61 |
4 60
|
eqtrid |
⊢ ( 𝑁 ∈ ℕ0 → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑏 ∈ ℕ0 [ 𝑏 / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 } = { 𝑎 ∣ ∃ 𝑏 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ( [ ( 𝑏 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑏 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) } ) |
| 62 |
|
nfcv |
⊢ Ⅎ 𝑢 ( ℕ0 ↑m ( 1 ... 𝑁 ) ) |
| 63 |
|
nfcv |
⊢ Ⅎ 𝑎 ( ℕ0 ↑m ( 1 ... 𝑁 ) ) |
| 64 |
|
nfv |
⊢ Ⅎ 𝑎 ∃ 𝑣 ∈ ℕ0 𝜓 |
| 65 |
|
nfcv |
⊢ Ⅎ 𝑢 ℕ0 |
| 66 |
|
nfcv |
⊢ Ⅎ 𝑢 𝑏 |
| 67 |
|
nfsbc1v |
⊢ Ⅎ 𝑢 [ 𝑎 / 𝑢 ] 𝜓 |
| 68 |
66 67
|
nfsbcw |
⊢ Ⅎ 𝑢 [ 𝑏 / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 |
| 69 |
65 68
|
nfrexw |
⊢ Ⅎ 𝑢 ∃ 𝑏 ∈ ℕ0 [ 𝑏 / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 |
| 70 |
|
sbceq1a |
⊢ ( 𝑢 = 𝑎 → ( 𝜓 ↔ [ 𝑎 / 𝑢 ] 𝜓 ) ) |
| 71 |
70
|
rexbidv |
⊢ ( 𝑢 = 𝑎 → ( ∃ 𝑣 ∈ ℕ0 𝜓 ↔ ∃ 𝑣 ∈ ℕ0 [ 𝑎 / 𝑢 ] 𝜓 ) ) |
| 72 |
|
nfv |
⊢ Ⅎ 𝑏 [ 𝑎 / 𝑢 ] 𝜓 |
| 73 |
|
nfsbc1v |
⊢ Ⅎ 𝑣 [ 𝑏 / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 |
| 74 |
|
sbceq1a |
⊢ ( 𝑣 = 𝑏 → ( [ 𝑎 / 𝑢 ] 𝜓 ↔ [ 𝑏 / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 ) ) |
| 75 |
72 73 74
|
cbvrexw |
⊢ ( ∃ 𝑣 ∈ ℕ0 [ 𝑎 / 𝑢 ] 𝜓 ↔ ∃ 𝑏 ∈ ℕ0 [ 𝑏 / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 ) |
| 76 |
71 75
|
bitrdi |
⊢ ( 𝑢 = 𝑎 → ( ∃ 𝑣 ∈ ℕ0 𝜓 ↔ ∃ 𝑏 ∈ ℕ0 [ 𝑏 / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 ) ) |
| 77 |
62 63 64 69 76
|
cbvrabw |
⊢ { 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑣 ∈ ℕ0 𝜓 } = { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑏 ∈ ℕ0 [ 𝑏 / 𝑣 ] [ 𝑎 / 𝑢 ] 𝜓 } |
| 78 |
|
fveq1 |
⊢ ( 𝑡 = 𝑏 → ( 𝑡 ‘ 𝑀 ) = ( 𝑏 ‘ 𝑀 ) ) |
| 79 |
|
reseq1 |
⊢ ( 𝑡 = 𝑏 → ( 𝑡 ↾ ( 1 ... 𝑁 ) ) = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) |
| 80 |
79
|
sbceq1d |
⊢ ( 𝑡 = 𝑏 → ( [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ↔ [ ( 𝑏 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ) ) |
| 81 |
78 80
|
sbceqbid |
⊢ ( 𝑡 = 𝑏 → ( [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ↔ [ ( 𝑏 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑏 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ) ) |
| 82 |
81
|
rexrab |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 } 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ↔ ∃ 𝑏 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ( [ ( 𝑏 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑏 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ) |
| 83 |
82
|
abbii |
⊢ { 𝑎 ∣ ∃ 𝑏 ∈ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 } 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) } = { 𝑎 ∣ ∃ 𝑏 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ( [ ( 𝑏 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑏 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) } |
| 84 |
61 77 83
|
3eqtr4g |
⊢ ( 𝑁 ∈ ℕ0 → { 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑣 ∈ ℕ0 𝜓 } = { 𝑎 ∣ ∃ 𝑏 ∈ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 } 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) } ) |
| 85 |
|
fvex |
⊢ ( 𝑡 ‘ 𝑀 ) ∈ V |
| 86 |
|
vex |
⊢ 𝑡 ∈ V |
| 87 |
86
|
resex |
⊢ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) ∈ V |
| 88 |
2 3
|
sylan9bb |
⊢ ( ( 𝑣 = ( 𝑡 ‘ 𝑀 ) ∧ 𝑢 = ( 𝑡 ↾ ( 1 ... 𝑁 ) ) ) → ( 𝜓 ↔ 𝜑 ) ) |
| 89 |
85 87 88
|
sbc2ie |
⊢ ( [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 ↔ 𝜑 ) |
| 90 |
89
|
rabbii |
⊢ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 } = { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ 𝜑 } |
| 91 |
90
|
rexeqi |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 } 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ↔ ∃ 𝑏 ∈ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ 𝜑 } 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) |
| 92 |
91
|
abbii |
⊢ { 𝑎 ∣ ∃ 𝑏 ∈ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] 𝜓 } 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) } = { 𝑎 ∣ ∃ 𝑏 ∈ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ 𝜑 } 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) } |
| 93 |
84 92
|
eqtrdi |
⊢ ( 𝑁 ∈ ℕ0 → { 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑣 ∈ ℕ0 𝜓 } = { 𝑎 ∣ ∃ 𝑏 ∈ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ 𝜑 } 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) } ) |
| 94 |
93
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ 𝜑 } ∈ ( Dioph ‘ 𝑀 ) ) → { 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑣 ∈ ℕ0 𝜓 } = { 𝑎 ∣ ∃ 𝑏 ∈ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ 𝜑 } 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) } ) |
| 95 |
|
simpl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ 𝜑 } ∈ ( Dioph ‘ 𝑀 ) ) → 𝑁 ∈ ℕ0 ) |
| 96 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
| 97 |
|
uzid |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 98 |
|
peano2uz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 99 |
96 97 98
|
3syl |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 100 |
1 99
|
eqeltrid |
⊢ ( 𝑁 ∈ ℕ0 → 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 101 |
100
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ 𝜑 } ∈ ( Dioph ‘ 𝑀 ) ) → 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 102 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ 𝜑 } ∈ ( Dioph ‘ 𝑀 ) ) → { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ 𝜑 } ∈ ( Dioph ‘ 𝑀 ) ) |
| 103 |
|
diophrex |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ 𝜑 } ∈ ( Dioph ‘ 𝑀 ) ) → { 𝑎 ∣ ∃ 𝑏 ∈ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ 𝜑 } 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) } ∈ ( Dioph ‘ 𝑁 ) ) |
| 104 |
95 101 102 103
|
syl3anc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ 𝜑 } ∈ ( Dioph ‘ 𝑀 ) ) → { 𝑎 ∣ ∃ 𝑏 ∈ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ 𝜑 } 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) } ∈ ( Dioph ‘ 𝑁 ) ) |
| 105 |
94 104
|
eqeltrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ 𝜑 } ∈ ( Dioph ‘ 𝑀 ) ) → { 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑣 ∈ ℕ0 𝜓 } ∈ ( Dioph ‘ 𝑁 ) ) |