| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapfzcons.1 | ⊢ 𝑀  =  ( 𝑁  +  1 ) | 
						
							| 2 |  | elmapi | ⊢ ( 𝐴  ∈  ( 𝐵  ↑m  ( 1 ... 𝑁 ) )  →  𝐴 : ( 1 ... 𝑁 ) ⟶ 𝐵 ) | 
						
							| 3 |  | ffn | ⊢ ( 𝐴 : ( 1 ... 𝑁 ) ⟶ 𝐵  →  𝐴  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 4 |  | fnresdm | ⊢ ( 𝐴  Fn  ( 1 ... 𝑁 )  →  ( 𝐴  ↾  ( 1 ... 𝑁 ) )  =  𝐴 ) | 
						
							| 5 | 2 3 4 | 3syl | ⊢ ( 𝐴  ∈  ( 𝐵  ↑m  ( 1 ... 𝑁 ) )  →  ( 𝐴  ↾  ( 1 ... 𝑁 ) )  =  𝐴 ) | 
						
							| 6 | 5 | uneq1d | ⊢ ( 𝐴  ∈  ( 𝐵  ↑m  ( 1 ... 𝑁 ) )  →  ( ( 𝐴  ↾  ( 1 ... 𝑁 ) )  ∪  ( { 〈 𝑀 ,  𝐶 〉 }  ↾  ( 1 ... 𝑁 ) ) )  =  ( 𝐴  ∪  ( { 〈 𝑀 ,  𝐶 〉 }  ↾  ( 1 ... 𝑁 ) ) ) ) | 
						
							| 7 |  | resundir | ⊢ ( ( 𝐴  ∪  { 〈 𝑀 ,  𝐶 〉 } )  ↾  ( 1 ... 𝑁 ) )  =  ( ( 𝐴  ↾  ( 1 ... 𝑁 ) )  ∪  ( { 〈 𝑀 ,  𝐶 〉 }  ↾  ( 1 ... 𝑁 ) ) ) | 
						
							| 8 |  | dmres | ⊢ dom  ( { 〈 𝑀 ,  𝐶 〉 }  ↾  ( 1 ... 𝑁 ) )  =  ( ( 1 ... 𝑁 )  ∩  dom  { 〈 𝑀 ,  𝐶 〉 } ) | 
						
							| 9 |  | dmsnopss | ⊢ dom  { 〈 𝑀 ,  𝐶 〉 }  ⊆  { 𝑀 } | 
						
							| 10 | 1 | sneqi | ⊢ { 𝑀 }  =  { ( 𝑁  +  1 ) } | 
						
							| 11 | 9 10 | sseqtri | ⊢ dom  { 〈 𝑀 ,  𝐶 〉 }  ⊆  { ( 𝑁  +  1 ) } | 
						
							| 12 |  | sslin | ⊢ ( dom  { 〈 𝑀 ,  𝐶 〉 }  ⊆  { ( 𝑁  +  1 ) }  →  ( ( 1 ... 𝑁 )  ∩  dom  { 〈 𝑀 ,  𝐶 〉 } )  ⊆  ( ( 1 ... 𝑁 )  ∩  { ( 𝑁  +  1 ) } ) ) | 
						
							| 13 | 11 12 | ax-mp | ⊢ ( ( 1 ... 𝑁 )  ∩  dom  { 〈 𝑀 ,  𝐶 〉 } )  ⊆  ( ( 1 ... 𝑁 )  ∩  { ( 𝑁  +  1 ) } ) | 
						
							| 14 |  | fzp1disj | ⊢ ( ( 1 ... 𝑁 )  ∩  { ( 𝑁  +  1 ) } )  =  ∅ | 
						
							| 15 |  | sseq0 | ⊢ ( ( ( ( 1 ... 𝑁 )  ∩  dom  { 〈 𝑀 ,  𝐶 〉 } )  ⊆  ( ( 1 ... 𝑁 )  ∩  { ( 𝑁  +  1 ) } )  ∧  ( ( 1 ... 𝑁 )  ∩  { ( 𝑁  +  1 ) } )  =  ∅ )  →  ( ( 1 ... 𝑁 )  ∩  dom  { 〈 𝑀 ,  𝐶 〉 } )  =  ∅ ) | 
						
							| 16 | 13 14 15 | mp2an | ⊢ ( ( 1 ... 𝑁 )  ∩  dom  { 〈 𝑀 ,  𝐶 〉 } )  =  ∅ | 
						
							| 17 | 8 16 | eqtri | ⊢ dom  ( { 〈 𝑀 ,  𝐶 〉 }  ↾  ( 1 ... 𝑁 ) )  =  ∅ | 
						
							| 18 |  | relres | ⊢ Rel  ( { 〈 𝑀 ,  𝐶 〉 }  ↾  ( 1 ... 𝑁 ) ) | 
						
							| 19 |  | reldm0 | ⊢ ( Rel  ( { 〈 𝑀 ,  𝐶 〉 }  ↾  ( 1 ... 𝑁 ) )  →  ( ( { 〈 𝑀 ,  𝐶 〉 }  ↾  ( 1 ... 𝑁 ) )  =  ∅  ↔  dom  ( { 〈 𝑀 ,  𝐶 〉 }  ↾  ( 1 ... 𝑁 ) )  =  ∅ ) ) | 
						
							| 20 | 18 19 | ax-mp | ⊢ ( ( { 〈 𝑀 ,  𝐶 〉 }  ↾  ( 1 ... 𝑁 ) )  =  ∅  ↔  dom  ( { 〈 𝑀 ,  𝐶 〉 }  ↾  ( 1 ... 𝑁 ) )  =  ∅ ) | 
						
							| 21 | 17 20 | mpbir | ⊢ ( { 〈 𝑀 ,  𝐶 〉 }  ↾  ( 1 ... 𝑁 ) )  =  ∅ | 
						
							| 22 | 21 | uneq2i | ⊢ ( 𝐴  ∪  ( { 〈 𝑀 ,  𝐶 〉 }  ↾  ( 1 ... 𝑁 ) ) )  =  ( 𝐴  ∪  ∅ ) | 
						
							| 23 |  | un0 | ⊢ ( 𝐴  ∪  ∅ )  =  𝐴 | 
						
							| 24 | 22 23 | eqtr2i | ⊢ 𝐴  =  ( 𝐴  ∪  ( { 〈 𝑀 ,  𝐶 〉 }  ↾  ( 1 ... 𝑁 ) ) ) | 
						
							| 25 | 6 7 24 | 3eqtr4g | ⊢ ( 𝐴  ∈  ( 𝐵  ↑m  ( 1 ... 𝑁 ) )  →  ( ( 𝐴  ∪  { 〈 𝑀 ,  𝐶 〉 } )  ↾  ( 1 ... 𝑁 ) )  =  𝐴 ) |