Metamath Proof Explorer


Theorem mapfzcons1

Description: Recover prefix mapping from an extended mapping. (Contributed by Stefan O'Rear, 10-Oct-2014) (Revised by Stefan O'Rear, 5-May-2015)

Ref Expression
Hypothesis mapfzcons.1 M=N+1
Assertion mapfzcons1 AB1NAMC1N=A

Proof

Step Hyp Ref Expression
1 mapfzcons.1 M=N+1
2 elmapi AB1NA:1NB
3 ffn A:1NBAFn1N
4 fnresdm AFn1NA1N=A
5 2 3 4 3syl AB1NA1N=A
6 5 uneq1d AB1NA1NMC1N=AMC1N
7 resundir AMC1N=A1NMC1N
8 dmres domMC1N=1NdomMC
9 dmsnopss domMCM
10 1 sneqi M=N+1
11 9 10 sseqtri domMCN+1
12 sslin domMCN+11NdomMC1NN+1
13 11 12 ax-mp 1NdomMC1NN+1
14 fzp1disj 1NN+1=
15 sseq0 1NdomMC1NN+11NN+1=1NdomMC=
16 13 14 15 mp2an 1NdomMC=
17 8 16 eqtri domMC1N=
18 relres RelMC1N
19 reldm0 RelMC1NMC1N=domMC1N=
20 18 19 ax-mp MC1N=domMC1N=
21 17 20 mpbir MC1N=
22 21 uneq2i AMC1N=A
23 un0 A=A
24 22 23 eqtr2i A=AMC1N
25 6 7 24 3eqtr4g AB1NAMC1N=A