| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapfzcons.1 |  |-  M = ( N + 1 ) | 
						
							| 2 |  | elmapi |  |-  ( A e. ( B ^m ( 1 ... N ) ) -> A : ( 1 ... N ) --> B ) | 
						
							| 3 |  | ffn |  |-  ( A : ( 1 ... N ) --> B -> A Fn ( 1 ... N ) ) | 
						
							| 4 |  | fnresdm |  |-  ( A Fn ( 1 ... N ) -> ( A |` ( 1 ... N ) ) = A ) | 
						
							| 5 | 2 3 4 | 3syl |  |-  ( A e. ( B ^m ( 1 ... N ) ) -> ( A |` ( 1 ... N ) ) = A ) | 
						
							| 6 | 5 | uneq1d |  |-  ( A e. ( B ^m ( 1 ... N ) ) -> ( ( A |` ( 1 ... N ) ) u. ( { <. M , C >. } |` ( 1 ... N ) ) ) = ( A u. ( { <. M , C >. } |` ( 1 ... N ) ) ) ) | 
						
							| 7 |  | resundir |  |-  ( ( A u. { <. M , C >. } ) |` ( 1 ... N ) ) = ( ( A |` ( 1 ... N ) ) u. ( { <. M , C >. } |` ( 1 ... N ) ) ) | 
						
							| 8 |  | dmres |  |-  dom ( { <. M , C >. } |` ( 1 ... N ) ) = ( ( 1 ... N ) i^i dom { <. M , C >. } ) | 
						
							| 9 |  | dmsnopss |  |-  dom { <. M , C >. } C_ { M } | 
						
							| 10 | 1 | sneqi |  |-  { M } = { ( N + 1 ) } | 
						
							| 11 | 9 10 | sseqtri |  |-  dom { <. M , C >. } C_ { ( N + 1 ) } | 
						
							| 12 |  | sslin |  |-  ( dom { <. M , C >. } C_ { ( N + 1 ) } -> ( ( 1 ... N ) i^i dom { <. M , C >. } ) C_ ( ( 1 ... N ) i^i { ( N + 1 ) } ) ) | 
						
							| 13 | 11 12 | ax-mp |  |-  ( ( 1 ... N ) i^i dom { <. M , C >. } ) C_ ( ( 1 ... N ) i^i { ( N + 1 ) } ) | 
						
							| 14 |  | fzp1disj |  |-  ( ( 1 ... N ) i^i { ( N + 1 ) } ) = (/) | 
						
							| 15 |  | sseq0 |  |-  ( ( ( ( 1 ... N ) i^i dom { <. M , C >. } ) C_ ( ( 1 ... N ) i^i { ( N + 1 ) } ) /\ ( ( 1 ... N ) i^i { ( N + 1 ) } ) = (/) ) -> ( ( 1 ... N ) i^i dom { <. M , C >. } ) = (/) ) | 
						
							| 16 | 13 14 15 | mp2an |  |-  ( ( 1 ... N ) i^i dom { <. M , C >. } ) = (/) | 
						
							| 17 | 8 16 | eqtri |  |-  dom ( { <. M , C >. } |` ( 1 ... N ) ) = (/) | 
						
							| 18 |  | relres |  |-  Rel ( { <. M , C >. } |` ( 1 ... N ) ) | 
						
							| 19 |  | reldm0 |  |-  ( Rel ( { <. M , C >. } |` ( 1 ... N ) ) -> ( ( { <. M , C >. } |` ( 1 ... N ) ) = (/) <-> dom ( { <. M , C >. } |` ( 1 ... N ) ) = (/) ) ) | 
						
							| 20 | 18 19 | ax-mp |  |-  ( ( { <. M , C >. } |` ( 1 ... N ) ) = (/) <-> dom ( { <. M , C >. } |` ( 1 ... N ) ) = (/) ) | 
						
							| 21 | 17 20 | mpbir |  |-  ( { <. M , C >. } |` ( 1 ... N ) ) = (/) | 
						
							| 22 | 21 | uneq2i |  |-  ( A u. ( { <. M , C >. } |` ( 1 ... N ) ) ) = ( A u. (/) ) | 
						
							| 23 |  | un0 |  |-  ( A u. (/) ) = A | 
						
							| 24 | 22 23 | eqtr2i |  |-  A = ( A u. ( { <. M , C >. } |` ( 1 ... N ) ) ) | 
						
							| 25 | 6 7 24 | 3eqtr4g |  |-  ( A e. ( B ^m ( 1 ... N ) ) -> ( ( A u. { <. M , C >. } ) |` ( 1 ... N ) ) = A ) |