Step |
Hyp |
Ref |
Expression |
1 |
|
rexrabdioph.1 |
|
2 |
|
rexrabdioph.2 |
|
3 |
|
rexrabdioph.3 |
|
4 |
|
df-rab |
|
5 |
|
dfsbcq |
|
6 |
5
|
cbvrexvw |
|
7 |
6
|
anbi2i |
|
8 |
|
r19.42v |
|
9 |
7 8
|
bitr4i |
|
10 |
|
simpll |
|
11 |
|
simpr |
|
12 |
|
simplr |
|
13 |
1
|
mapfzcons |
|
14 |
10 11 12 13
|
syl3anc |
|
15 |
14
|
adantrr |
|
16 |
1
|
mapfzcons2 |
|
17 |
11 12 16
|
syl2anc |
|
18 |
17
|
eqcomd |
|
19 |
1
|
mapfzcons1 |
|
20 |
19
|
adantl |
|
21 |
20
|
eqcomd |
|
22 |
21
|
sbceq1d |
|
23 |
18 22
|
sbceqbid |
|
24 |
23
|
biimpd |
|
25 |
24
|
impr |
|
26 |
21
|
adantrr |
|
27 |
|
fveq1 |
|
28 |
|
reseq1 |
|
29 |
28
|
sbceq1d |
|
30 |
27 29
|
sbceqbid |
|
31 |
28
|
eqeq2d |
|
32 |
30 31
|
anbi12d |
|
33 |
32
|
rspcev |
|
34 |
15 25 26 33
|
syl12anc |
|
35 |
34
|
rexlimdva2 |
|
36 |
|
elmapi |
|
37 |
|
nn0p1nn |
|
38 |
1 37
|
eqeltrid |
|
39 |
|
elfz1end |
|
40 |
38 39
|
sylib |
|
41 |
|
ffvelrn |
|
42 |
36 40 41
|
syl2anr |
|
43 |
42
|
adantr |
|
44 |
|
simprr |
|
45 |
1
|
mapfzcons1cl |
|
46 |
45
|
ad2antlr |
|
47 |
44 46
|
eqeltrd |
|
48 |
|
simprl |
|
49 |
|
dfsbcq |
|
50 |
49
|
sbcbidv |
|
51 |
50
|
ad2antll |
|
52 |
48 51
|
mpbird |
|
53 |
|
dfsbcq |
|
54 |
53
|
anbi2d |
|
55 |
54
|
rspcev |
|
56 |
43 47 52 55
|
syl12anc |
|
57 |
56
|
rexlimdva2 |
|
58 |
35 57
|
impbid |
|
59 |
9 58
|
syl5bb |
|
60 |
59
|
abbidv |
|
61 |
4 60
|
eqtrid |
|
62 |
|
nfcv |
|
63 |
|
nfcv |
|
64 |
|
nfv |
|
65 |
|
nfcv |
|
66 |
|
nfcv |
|
67 |
|
nfsbc1v |
|
68 |
66 67
|
nfsbcw |
|
69 |
65 68
|
nfrex |
|
70 |
|
sbceq1a |
|
71 |
70
|
rexbidv |
|
72 |
|
nfv |
|
73 |
|
nfsbc1v |
|
74 |
|
sbceq1a |
|
75 |
72 73 74
|
cbvrexw |
|
76 |
71 75
|
bitrdi |
|
77 |
62 63 64 69 76
|
cbvrabw |
|
78 |
|
fveq1 |
|
79 |
|
reseq1 |
|
80 |
79
|
sbceq1d |
|
81 |
78 80
|
sbceqbid |
|
82 |
81
|
rexrab |
|
83 |
82
|
abbii |
|
84 |
61 77 83
|
3eqtr4g |
|
85 |
|
fvex |
|
86 |
|
vex |
|
87 |
86
|
resex |
|
88 |
2 3
|
sylan9bb |
|
89 |
85 87 88
|
sbc2ie |
|
90 |
89
|
rabbii |
|
91 |
90
|
rexeqi |
|
92 |
91
|
abbii |
|
93 |
84 92
|
eqtrdi |
|
94 |
93
|
adantr |
|
95 |
|
simpl |
|
96 |
|
nn0z |
|
97 |
|
uzid |
|
98 |
|
peano2uz |
|
99 |
96 97 98
|
3syl |
|
100 |
1 99
|
eqeltrid |
|
101 |
100
|
adantr |
|
102 |
|
simpr |
|
103 |
|
diophrex |
|
104 |
95 101 102 103
|
syl3anc |
|
105 |
94 104
|
eqeltrd |
|