Metamath Proof Explorer


Theorem rexrabdioph

Description: Diophantine set builder for existential quantification. (Contributed by Stefan O'Rear, 10-Oct-2014)

Ref Expression
Hypotheses rexrabdioph.1 M=N+1
rexrabdioph.2 v=tMψχ
rexrabdioph.3 u=t1Nχφ
Assertion rexrabdioph N0t01M|φDiophMu01N|v0ψDiophN

Proof

Step Hyp Ref Expression
1 rexrabdioph.1 M=N+1
2 rexrabdioph.2 v=tMψχ
3 rexrabdioph.3 u=t1Nχφ
4 df-rab a01N|b0[˙b/v]˙[˙a/u]˙ψ=a|a01Nb0[˙b/v]˙[˙a/u]˙ψ
5 dfsbcq b=c[˙b/v]˙[˙a/u]˙ψ[˙c/v]˙[˙a/u]˙ψ
6 5 cbvrexvw b0[˙b/v]˙[˙a/u]˙ψc0[˙c/v]˙[˙a/u]˙ψ
7 6 anbi2i a01Nb0[˙b/v]˙[˙a/u]˙ψa01Nc0[˙c/v]˙[˙a/u]˙ψ
8 r19.42v c0a01N[˙c/v]˙[˙a/u]˙ψa01Nc0[˙c/v]˙[˙a/u]˙ψ
9 7 8 bitr4i a01Nb0[˙b/v]˙[˙a/u]˙ψc0a01N[˙c/v]˙[˙a/u]˙ψ
10 simpll N0c0a01NN0
11 simpr N0c0a01Na01N
12 simplr N0c0a01Nc0
13 1 mapfzcons N0a01Nc0aMc01M
14 10 11 12 13 syl3anc N0c0a01NaMc01M
15 14 adantrr N0c0a01N[˙c/v]˙[˙a/u]˙ψaMc01M
16 1 mapfzcons2 a01Nc0aMcM=c
17 11 12 16 syl2anc N0c0a01NaMcM=c
18 17 eqcomd N0c0a01Nc=aMcM
19 1 mapfzcons1 a01NaMc1N=a
20 19 adantl N0c0a01NaMc1N=a
21 20 eqcomd N0c0a01Na=aMc1N
22 21 sbceq1d N0c0a01N[˙a/u]˙ψ[˙aMc1N/u]˙ψ
23 18 22 sbceqbid N0c0a01N[˙c/v]˙[˙a/u]˙ψ[˙aMcM/v]˙[˙aMc1N/u]˙ψ
24 23 biimpd N0c0a01N[˙c/v]˙[˙a/u]˙ψ[˙aMcM/v]˙[˙aMc1N/u]˙ψ
25 24 impr N0c0a01N[˙c/v]˙[˙a/u]˙ψ[˙aMcM/v]˙[˙aMc1N/u]˙ψ
26 21 adantrr N0c0a01N[˙c/v]˙[˙a/u]˙ψa=aMc1N
27 fveq1 b=aMcbM=aMcM
28 reseq1 b=aMcb1N=aMc1N
29 28 sbceq1d b=aMc[˙b1N/u]˙ψ[˙aMc1N/u]˙ψ
30 27 29 sbceqbid b=aMc[˙bM/v]˙[˙b1N/u]˙ψ[˙aMcM/v]˙[˙aMc1N/u]˙ψ
31 28 eqeq2d b=aMca=b1Na=aMc1N
32 30 31 anbi12d b=aMc[˙bM/v]˙[˙b1N/u]˙ψa=b1N[˙aMcM/v]˙[˙aMc1N/u]˙ψa=aMc1N
33 32 rspcev aMc01M[˙aMcM/v]˙[˙aMc1N/u]˙ψa=aMc1Nb01M[˙bM/v]˙[˙b1N/u]˙ψa=b1N
34 15 25 26 33 syl12anc N0c0a01N[˙c/v]˙[˙a/u]˙ψb01M[˙bM/v]˙[˙b1N/u]˙ψa=b1N
35 34 rexlimdva2 N0c0a01N[˙c/v]˙[˙a/u]˙ψb01M[˙bM/v]˙[˙b1N/u]˙ψa=b1N
36 elmapi b01Mb:1M0
37 nn0p1nn N0N+1
38 1 37 eqeltrid N0M
39 elfz1end MM1M
40 38 39 sylib N0M1M
41 ffvelcdm b:1M0M1MbM0
42 36 40 41 syl2anr N0b01MbM0
43 42 adantr N0b01M[˙bM/v]˙[˙b1N/u]˙ψa=b1NbM0
44 simprr N0b01M[˙bM/v]˙[˙b1N/u]˙ψa=b1Na=b1N
45 1 mapfzcons1cl b01Mb1N01N
46 45 ad2antlr N0b01M[˙bM/v]˙[˙b1N/u]˙ψa=b1Nb1N01N
47 44 46 eqeltrd N0b01M[˙bM/v]˙[˙b1N/u]˙ψa=b1Na01N
48 simprl N0b01M[˙bM/v]˙[˙b1N/u]˙ψa=b1N[˙bM/v]˙[˙b1N/u]˙ψ
49 dfsbcq a=b1N[˙a/u]˙ψ[˙b1N/u]˙ψ
50 49 sbcbidv a=b1N[˙bM/v]˙[˙a/u]˙ψ[˙bM/v]˙[˙b1N/u]˙ψ
51 50 ad2antll N0b01M[˙bM/v]˙[˙b1N/u]˙ψa=b1N[˙bM/v]˙[˙a/u]˙ψ[˙bM/v]˙[˙b1N/u]˙ψ
52 48 51 mpbird N0b01M[˙bM/v]˙[˙b1N/u]˙ψa=b1N[˙bM/v]˙[˙a/u]˙ψ
53 dfsbcq c=bM[˙c/v]˙[˙a/u]˙ψ[˙bM/v]˙[˙a/u]˙ψ
54 53 anbi2d c=bMa01N[˙c/v]˙[˙a/u]˙ψa01N[˙bM/v]˙[˙a/u]˙ψ
55 54 rspcev bM0a01N[˙bM/v]˙[˙a/u]˙ψc0a01N[˙c/v]˙[˙a/u]˙ψ
56 43 47 52 55 syl12anc N0b01M[˙bM/v]˙[˙b1N/u]˙ψa=b1Nc0a01N[˙c/v]˙[˙a/u]˙ψ
57 56 rexlimdva2 N0b01M[˙bM/v]˙[˙b1N/u]˙ψa=b1Nc0a01N[˙c/v]˙[˙a/u]˙ψ
58 35 57 impbid N0c0a01N[˙c/v]˙[˙a/u]˙ψb01M[˙bM/v]˙[˙b1N/u]˙ψa=b1N
59 9 58 bitrid N0a01Nb0[˙b/v]˙[˙a/u]˙ψb01M[˙bM/v]˙[˙b1N/u]˙ψa=b1N
60 59 abbidv N0a|a01Nb0[˙b/v]˙[˙a/u]˙ψ=a|b01M[˙bM/v]˙[˙b1N/u]˙ψa=b1N
61 4 60 eqtrid N0a01N|b0[˙b/v]˙[˙a/u]˙ψ=a|b01M[˙bM/v]˙[˙b1N/u]˙ψa=b1N
62 nfcv _u01N
63 nfcv _a01N
64 nfv av0ψ
65 nfcv _u0
66 nfcv _ub
67 nfsbc1v u[˙a/u]˙ψ
68 66 67 nfsbcw u[˙b/v]˙[˙a/u]˙ψ
69 65 68 nfrexw ub0[˙b/v]˙[˙a/u]˙ψ
70 sbceq1a u=aψ[˙a/u]˙ψ
71 70 rexbidv u=av0ψv0[˙a/u]˙ψ
72 nfv b[˙a/u]˙ψ
73 nfsbc1v v[˙b/v]˙[˙a/u]˙ψ
74 sbceq1a v=b[˙a/u]˙ψ[˙b/v]˙[˙a/u]˙ψ
75 72 73 74 cbvrexw v0[˙a/u]˙ψb0[˙b/v]˙[˙a/u]˙ψ
76 71 75 bitrdi u=av0ψb0[˙b/v]˙[˙a/u]˙ψ
77 62 63 64 69 76 cbvrabw u01N|v0ψ=a01N|b0[˙b/v]˙[˙a/u]˙ψ
78 fveq1 t=btM=bM
79 reseq1 t=bt1N=b1N
80 79 sbceq1d t=b[˙t1N/u]˙ψ[˙b1N/u]˙ψ
81 78 80 sbceqbid t=b[˙tM/v]˙[˙t1N/u]˙ψ[˙bM/v]˙[˙b1N/u]˙ψ
82 81 rexrab bt01M|[˙tM/v]˙[˙t1N/u]˙ψa=b1Nb01M[˙bM/v]˙[˙b1N/u]˙ψa=b1N
83 82 abbii a|bt01M|[˙tM/v]˙[˙t1N/u]˙ψa=b1N=a|b01M[˙bM/v]˙[˙b1N/u]˙ψa=b1N
84 61 77 83 3eqtr4g N0u01N|v0ψ=a|bt01M|[˙tM/v]˙[˙t1N/u]˙ψa=b1N
85 fvex tMV
86 vex tV
87 86 resex t1NV
88 2 3 sylan9bb v=tMu=t1Nψφ
89 85 87 88 sbc2ie [˙tM/v]˙[˙t1N/u]˙ψφ
90 89 rabbii t01M|[˙tM/v]˙[˙t1N/u]˙ψ=t01M|φ
91 90 rexeqi bt01M|[˙tM/v]˙[˙t1N/u]˙ψa=b1Nbt01M|φa=b1N
92 91 abbii a|bt01M|[˙tM/v]˙[˙t1N/u]˙ψa=b1N=a|bt01M|φa=b1N
93 84 92 eqtrdi N0u01N|v0ψ=a|bt01M|φa=b1N
94 93 adantr N0t01M|φDiophMu01N|v0ψ=a|bt01M|φa=b1N
95 simpl N0t01M|φDiophMN0
96 nn0z N0N
97 uzid NNN
98 peano2uz NNN+1N
99 96 97 98 3syl N0N+1N
100 1 99 eqeltrid N0MN
101 100 adantr N0t01M|φDiophMMN
102 simpr N0t01M|φDiophMt01M|φDiophM
103 diophrex N0MNt01M|φDiophMa|bt01M|φa=b1NDiophN
104 95 101 102 103 syl3anc N0t01M|φDiophMa|bt01M|φa=b1NDiophN
105 94 104 eqeltrd N0t01M|φDiophMu01N|v0ψDiophN