Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑡 → ( 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ↔ 𝑡 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ) |
2 |
1
|
rexbidv |
⊢ ( 𝑎 = 𝑡 → ( ∃ 𝑏 ∈ 𝑆 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ↔ ∃ 𝑏 ∈ 𝑆 𝑡 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ) |
3 |
|
reseq1 |
⊢ ( 𝑏 = 𝑢 → ( 𝑏 ↾ ( 1 ... 𝑁 ) ) = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ) |
4 |
3
|
eqeq2d |
⊢ ( 𝑏 = 𝑢 → ( 𝑡 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ↔ 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ) ) |
5 |
4
|
cbvrexvw |
⊢ ( ∃ 𝑏 ∈ 𝑆 𝑡 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ↔ ∃ 𝑢 ∈ 𝑆 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ) |
6 |
2 5
|
bitrdi |
⊢ ( 𝑎 = 𝑡 → ( ∃ 𝑏 ∈ 𝑆 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ↔ ∃ 𝑢 ∈ 𝑆 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ) ) |
7 |
6
|
cbvabv |
⊢ { 𝑎 ∣ ∃ 𝑏 ∈ 𝑆 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) } = { 𝑡 ∣ ∃ 𝑢 ∈ 𝑆 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) } |
8 |
|
rexeq |
⊢ ( 𝑆 = { 𝑑 ∣ ∃ 𝑒 ∈ ( ℕ0 ↑m ℕ ) ( 𝑑 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) } → ( ∃ 𝑏 ∈ 𝑆 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ↔ ∃ 𝑏 ∈ { 𝑑 ∣ ∃ 𝑒 ∈ ( ℕ0 ↑m ℕ ) ( 𝑑 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) } 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ) |
9 |
8
|
abbidv |
⊢ ( 𝑆 = { 𝑑 ∣ ∃ 𝑒 ∈ ( ℕ0 ↑m ℕ ) ( 𝑑 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) } → { 𝑎 ∣ ∃ 𝑏 ∈ 𝑆 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) } = { 𝑎 ∣ ∃ 𝑏 ∈ { 𝑑 ∣ ∃ 𝑒 ∈ ( ℕ0 ↑m ℕ ) ( 𝑑 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) } 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) } ) |
10 |
9
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑆 ∈ ( Dioph ‘ 𝑀 ) ) ∧ 𝑐 ∈ ( mzPoly ‘ ℕ ) ) ∧ 𝑆 = { 𝑑 ∣ ∃ 𝑒 ∈ ( ℕ0 ↑m ℕ ) ( 𝑑 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) } ) → { 𝑎 ∣ ∃ 𝑏 ∈ 𝑆 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) } = { 𝑎 ∣ ∃ 𝑏 ∈ { 𝑑 ∣ ∃ 𝑒 ∈ ( ℕ0 ↑m ℕ ) ( 𝑑 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) } 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) } ) |
11 |
|
eqeq1 |
⊢ ( 𝑑 = 𝑏 → ( 𝑑 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ↔ 𝑏 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ) ) |
12 |
11
|
anbi1d |
⊢ ( 𝑑 = 𝑏 → ( ( 𝑑 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) ↔ ( 𝑏 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) ) ) |
13 |
12
|
rexbidv |
⊢ ( 𝑑 = 𝑏 → ( ∃ 𝑒 ∈ ( ℕ0 ↑m ℕ ) ( 𝑑 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) ↔ ∃ 𝑒 ∈ ( ℕ0 ↑m ℕ ) ( 𝑏 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) ) ) |
14 |
13
|
rexab |
⊢ ( ∃ 𝑏 ∈ { 𝑑 ∣ ∃ 𝑒 ∈ ( ℕ0 ↑m ℕ ) ( 𝑑 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) } 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ↔ ∃ 𝑏 ( ∃ 𝑒 ∈ ( ℕ0 ↑m ℕ ) ( 𝑏 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ) |
15 |
|
r19.41v |
⊢ ( ∃ 𝑒 ∈ ( ℕ0 ↑m ℕ ) ( ( 𝑏 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ↔ ( ∃ 𝑒 ∈ ( ℕ0 ↑m ℕ ) ( 𝑏 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ) |
16 |
15
|
exbii |
⊢ ( ∃ 𝑏 ∃ 𝑒 ∈ ( ℕ0 ↑m ℕ ) ( ( 𝑏 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ↔ ∃ 𝑏 ( ∃ 𝑒 ∈ ( ℕ0 ↑m ℕ ) ( 𝑏 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ) |
17 |
|
rexcom4 |
⊢ ( ∃ 𝑒 ∈ ( ℕ0 ↑m ℕ ) ∃ 𝑏 ( ( 𝑏 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ↔ ∃ 𝑏 ∃ 𝑒 ∈ ( ℕ0 ↑m ℕ ) ( ( 𝑏 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ) |
18 |
|
anass |
⊢ ( ( ( 𝑏 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ↔ ( 𝑏 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( ( 𝑐 ‘ 𝑒 ) = 0 ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ) ) |
19 |
18
|
exbii |
⊢ ( ∃ 𝑏 ( ( 𝑏 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ↔ ∃ 𝑏 ( 𝑏 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( ( 𝑐 ‘ 𝑒 ) = 0 ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ) ) |
20 |
|
vex |
⊢ 𝑒 ∈ V |
21 |
20
|
resex |
⊢ ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∈ V |
22 |
|
reseq1 |
⊢ ( 𝑏 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) → ( 𝑏 ↾ ( 1 ... 𝑁 ) ) = ( ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ↾ ( 1 ... 𝑁 ) ) ) |
23 |
22
|
eqeq2d |
⊢ ( 𝑏 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) → ( 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ↔ 𝑎 = ( ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ↾ ( 1 ... 𝑁 ) ) ) ) |
24 |
23
|
anbi2d |
⊢ ( 𝑏 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) → ( ( ( 𝑐 ‘ 𝑒 ) = 0 ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ↔ ( ( 𝑐 ‘ 𝑒 ) = 0 ∧ 𝑎 = ( ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ↾ ( 1 ... 𝑁 ) ) ) ) ) |
25 |
21 24
|
ceqsexv |
⊢ ( ∃ 𝑏 ( 𝑏 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( ( 𝑐 ‘ 𝑒 ) = 0 ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ) ↔ ( ( 𝑐 ‘ 𝑒 ) = 0 ∧ 𝑎 = ( ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ↾ ( 1 ... 𝑁 ) ) ) ) |
26 |
19 25
|
bitri |
⊢ ( ∃ 𝑏 ( ( 𝑏 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ↔ ( ( 𝑐 ‘ 𝑒 ) = 0 ∧ 𝑎 = ( ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ↾ ( 1 ... 𝑁 ) ) ) ) |
27 |
|
ancom |
⊢ ( ( ( 𝑐 ‘ 𝑒 ) = 0 ∧ 𝑎 = ( ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ↾ ( 1 ... 𝑁 ) ) ) ↔ ( 𝑎 = ( ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) ) |
28 |
|
simpl2 |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑆 ∈ ( Dioph ‘ 𝑀 ) ) ∧ 𝑐 ∈ ( mzPoly ‘ ℕ ) ) → 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
29 |
|
fzss2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 1 ... 𝑁 ) ⊆ ( 1 ... 𝑀 ) ) |
30 |
|
resabs1 |
⊢ ( ( 1 ... 𝑁 ) ⊆ ( 1 ... 𝑀 ) → ( ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ↾ ( 1 ... 𝑁 ) ) = ( 𝑒 ↾ ( 1 ... 𝑁 ) ) ) |
31 |
28 29 30
|
3syl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑆 ∈ ( Dioph ‘ 𝑀 ) ) ∧ 𝑐 ∈ ( mzPoly ‘ ℕ ) ) → ( ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ↾ ( 1 ... 𝑁 ) ) = ( 𝑒 ↾ ( 1 ... 𝑁 ) ) ) |
32 |
31
|
eqeq2d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑆 ∈ ( Dioph ‘ 𝑀 ) ) ∧ 𝑐 ∈ ( mzPoly ‘ ℕ ) ) → ( 𝑎 = ( ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ↾ ( 1 ... 𝑁 ) ) ↔ 𝑎 = ( 𝑒 ↾ ( 1 ... 𝑁 ) ) ) ) |
33 |
32
|
anbi1d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑆 ∈ ( Dioph ‘ 𝑀 ) ) ∧ 𝑐 ∈ ( mzPoly ‘ ℕ ) ) → ( ( 𝑎 = ( ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) ↔ ( 𝑎 = ( 𝑒 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) ) ) |
34 |
27 33
|
syl5bb |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑆 ∈ ( Dioph ‘ 𝑀 ) ) ∧ 𝑐 ∈ ( mzPoly ‘ ℕ ) ) → ( ( ( 𝑐 ‘ 𝑒 ) = 0 ∧ 𝑎 = ( ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ↾ ( 1 ... 𝑁 ) ) ) ↔ ( 𝑎 = ( 𝑒 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) ) ) |
35 |
26 34
|
syl5bb |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑆 ∈ ( Dioph ‘ 𝑀 ) ) ∧ 𝑐 ∈ ( mzPoly ‘ ℕ ) ) → ( ∃ 𝑏 ( ( 𝑏 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ↔ ( 𝑎 = ( 𝑒 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) ) ) |
36 |
35
|
rexbidv |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑆 ∈ ( Dioph ‘ 𝑀 ) ) ∧ 𝑐 ∈ ( mzPoly ‘ ℕ ) ) → ( ∃ 𝑒 ∈ ( ℕ0 ↑m ℕ ) ∃ 𝑏 ( ( 𝑏 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ↔ ∃ 𝑒 ∈ ( ℕ0 ↑m ℕ ) ( 𝑎 = ( 𝑒 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) ) ) |
37 |
17 36
|
bitr3id |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑆 ∈ ( Dioph ‘ 𝑀 ) ) ∧ 𝑐 ∈ ( mzPoly ‘ ℕ ) ) → ( ∃ 𝑏 ∃ 𝑒 ∈ ( ℕ0 ↑m ℕ ) ( ( 𝑏 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ↔ ∃ 𝑒 ∈ ( ℕ0 ↑m ℕ ) ( 𝑎 = ( 𝑒 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) ) ) |
38 |
16 37
|
bitr3id |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑆 ∈ ( Dioph ‘ 𝑀 ) ) ∧ 𝑐 ∈ ( mzPoly ‘ ℕ ) ) → ( ∃ 𝑏 ( ∃ 𝑒 ∈ ( ℕ0 ↑m ℕ ) ( 𝑏 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) ∧ 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ↔ ∃ 𝑒 ∈ ( ℕ0 ↑m ℕ ) ( 𝑎 = ( 𝑒 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) ) ) |
39 |
14 38
|
syl5bb |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑆 ∈ ( Dioph ‘ 𝑀 ) ) ∧ 𝑐 ∈ ( mzPoly ‘ ℕ ) ) → ( ∃ 𝑏 ∈ { 𝑑 ∣ ∃ 𝑒 ∈ ( ℕ0 ↑m ℕ ) ( 𝑑 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) } 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ↔ ∃ 𝑒 ∈ ( ℕ0 ↑m ℕ ) ( 𝑎 = ( 𝑒 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) ) ) |
40 |
39
|
abbidv |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑆 ∈ ( Dioph ‘ 𝑀 ) ) ∧ 𝑐 ∈ ( mzPoly ‘ ℕ ) ) → { 𝑎 ∣ ∃ 𝑏 ∈ { 𝑑 ∣ ∃ 𝑒 ∈ ( ℕ0 ↑m ℕ ) ( 𝑑 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) } 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) } = { 𝑎 ∣ ∃ 𝑒 ∈ ( ℕ0 ↑m ℕ ) ( 𝑎 = ( 𝑒 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) } ) |
41 |
|
eldioph3 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑐 ∈ ( mzPoly ‘ ℕ ) ) → { 𝑎 ∣ ∃ 𝑒 ∈ ( ℕ0 ↑m ℕ ) ( 𝑎 = ( 𝑒 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) } ∈ ( Dioph ‘ 𝑁 ) ) |
42 |
41
|
3ad2antl1 |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑆 ∈ ( Dioph ‘ 𝑀 ) ) ∧ 𝑐 ∈ ( mzPoly ‘ ℕ ) ) → { 𝑎 ∣ ∃ 𝑒 ∈ ( ℕ0 ↑m ℕ ) ( 𝑎 = ( 𝑒 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) } ∈ ( Dioph ‘ 𝑁 ) ) |
43 |
40 42
|
eqeltrd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑆 ∈ ( Dioph ‘ 𝑀 ) ) ∧ 𝑐 ∈ ( mzPoly ‘ ℕ ) ) → { 𝑎 ∣ ∃ 𝑏 ∈ { 𝑑 ∣ ∃ 𝑒 ∈ ( ℕ0 ↑m ℕ ) ( 𝑑 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) } 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) } ∈ ( Dioph ‘ 𝑁 ) ) |
44 |
43
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑆 ∈ ( Dioph ‘ 𝑀 ) ) ∧ 𝑐 ∈ ( mzPoly ‘ ℕ ) ) ∧ 𝑆 = { 𝑑 ∣ ∃ 𝑒 ∈ ( ℕ0 ↑m ℕ ) ( 𝑑 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) } ) → { 𝑎 ∣ ∃ 𝑏 ∈ { 𝑑 ∣ ∃ 𝑒 ∈ ( ℕ0 ↑m ℕ ) ( 𝑑 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) } 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) } ∈ ( Dioph ‘ 𝑁 ) ) |
45 |
10 44
|
eqeltrd |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑆 ∈ ( Dioph ‘ 𝑀 ) ) ∧ 𝑐 ∈ ( mzPoly ‘ ℕ ) ) ∧ 𝑆 = { 𝑑 ∣ ∃ 𝑒 ∈ ( ℕ0 ↑m ℕ ) ( 𝑑 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) } ) → { 𝑎 ∣ ∃ 𝑏 ∈ 𝑆 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) } ∈ ( Dioph ‘ 𝑁 ) ) |
46 |
|
eldioph3b |
⊢ ( 𝑆 ∈ ( Dioph ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℕ0 ∧ ∃ 𝑐 ∈ ( mzPoly ‘ ℕ ) 𝑆 = { 𝑑 ∣ ∃ 𝑒 ∈ ( ℕ0 ↑m ℕ ) ( 𝑑 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) } ) ) |
47 |
46
|
simprbi |
⊢ ( 𝑆 ∈ ( Dioph ‘ 𝑀 ) → ∃ 𝑐 ∈ ( mzPoly ‘ ℕ ) 𝑆 = { 𝑑 ∣ ∃ 𝑒 ∈ ( ℕ0 ↑m ℕ ) ( 𝑑 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) } ) |
48 |
47
|
3ad2ant3 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑆 ∈ ( Dioph ‘ 𝑀 ) ) → ∃ 𝑐 ∈ ( mzPoly ‘ ℕ ) 𝑆 = { 𝑑 ∣ ∃ 𝑒 ∈ ( ℕ0 ↑m ℕ ) ( 𝑑 = ( 𝑒 ↾ ( 1 ... 𝑀 ) ) ∧ ( 𝑐 ‘ 𝑒 ) = 0 ) } ) |
49 |
45 48
|
r19.29a |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑆 ∈ ( Dioph ‘ 𝑀 ) ) → { 𝑎 ∣ ∃ 𝑏 ∈ 𝑆 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) } ∈ ( Dioph ‘ 𝑁 ) ) |
50 |
7 49
|
eqeltrrid |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑆 ∈ ( Dioph ‘ 𝑀 ) ) → { 𝑡 ∣ ∃ 𝑢 ∈ 𝑆 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) } ∈ ( Dioph ‘ 𝑁 ) ) |