Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ( mzPoly ‘ ℕ ) ) → 𝑁 ∈ ℕ0 ) |
2 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ( mzPoly ‘ ℕ ) ) → 𝑃 ∈ ( mzPoly ‘ ℕ ) ) |
3 |
|
eqidd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ( mzPoly ‘ ℕ ) ) → { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ℕ ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑢 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ℕ ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑢 ) = 0 ) } ) |
4 |
|
fveq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ‘ 𝑏 ) = ( 𝑃 ‘ 𝑏 ) ) |
5 |
4
|
eqeq1d |
⊢ ( 𝑝 = 𝑃 → ( ( 𝑝 ‘ 𝑏 ) = 0 ↔ ( 𝑃 ‘ 𝑏 ) = 0 ) ) |
6 |
5
|
anbi2d |
⊢ ( 𝑝 = 𝑃 → ( ( 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑏 ) = 0 ) ↔ ( 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑏 ) = 0 ) ) ) |
7 |
6
|
rexbidv |
⊢ ( 𝑝 = 𝑃 → ( ∃ 𝑏 ∈ ( ℕ0 ↑m ℕ ) ( 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑏 ) = 0 ) ↔ ∃ 𝑏 ∈ ( ℕ0 ↑m ℕ ) ( 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑏 ) = 0 ) ) ) |
8 |
7
|
abbidv |
⊢ ( 𝑝 = 𝑃 → { 𝑎 ∣ ∃ 𝑏 ∈ ( ℕ0 ↑m ℕ ) ( 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑏 ) = 0 ) } = { 𝑎 ∣ ∃ 𝑏 ∈ ( ℕ0 ↑m ℕ ) ( 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑏 ) = 0 ) } ) |
9 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑡 → ( 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ↔ 𝑡 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ) ) |
10 |
9
|
anbi1d |
⊢ ( 𝑎 = 𝑡 → ( ( 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑏 ) = 0 ) ↔ ( 𝑡 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑏 ) = 0 ) ) ) |
11 |
10
|
rexbidv |
⊢ ( 𝑎 = 𝑡 → ( ∃ 𝑏 ∈ ( ℕ0 ↑m ℕ ) ( 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑏 ) = 0 ) ↔ ∃ 𝑏 ∈ ( ℕ0 ↑m ℕ ) ( 𝑡 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑏 ) = 0 ) ) ) |
12 |
|
reseq1 |
⊢ ( 𝑏 = 𝑢 → ( 𝑏 ↾ ( 1 ... 𝑁 ) ) = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ) |
13 |
12
|
eqeq2d |
⊢ ( 𝑏 = 𝑢 → ( 𝑡 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ↔ 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ) ) |
14 |
|
fveqeq2 |
⊢ ( 𝑏 = 𝑢 → ( ( 𝑃 ‘ 𝑏 ) = 0 ↔ ( 𝑃 ‘ 𝑢 ) = 0 ) ) |
15 |
13 14
|
anbi12d |
⊢ ( 𝑏 = 𝑢 → ( ( 𝑡 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑏 ) = 0 ) ↔ ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑢 ) = 0 ) ) ) |
16 |
15
|
cbvrexvw |
⊢ ( ∃ 𝑏 ∈ ( ℕ0 ↑m ℕ ) ( 𝑡 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑏 ) = 0 ) ↔ ∃ 𝑢 ∈ ( ℕ0 ↑m ℕ ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑢 ) = 0 ) ) |
17 |
11 16
|
bitrdi |
⊢ ( 𝑎 = 𝑡 → ( ∃ 𝑏 ∈ ( ℕ0 ↑m ℕ ) ( 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑏 ) = 0 ) ↔ ∃ 𝑢 ∈ ( ℕ0 ↑m ℕ ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑢 ) = 0 ) ) ) |
18 |
17
|
cbvabv |
⊢ { 𝑎 ∣ ∃ 𝑏 ∈ ( ℕ0 ↑m ℕ ) ( 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑏 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ℕ ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑢 ) = 0 ) } |
19 |
8 18
|
eqtrdi |
⊢ ( 𝑝 = 𝑃 → { 𝑎 ∣ ∃ 𝑏 ∈ ( ℕ0 ↑m ℕ ) ( 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑏 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ℕ ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑢 ) = 0 ) } ) |
20 |
19
|
rspceeqv |
⊢ ( ( 𝑃 ∈ ( mzPoly ‘ ℕ ) ∧ { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ℕ ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑢 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ℕ ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑢 ) = 0 ) } ) → ∃ 𝑝 ∈ ( mzPoly ‘ ℕ ) { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ℕ ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑢 ) = 0 ) } = { 𝑎 ∣ ∃ 𝑏 ∈ ( ℕ0 ↑m ℕ ) ( 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑏 ) = 0 ) } ) |
21 |
2 3 20
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ( mzPoly ‘ ℕ ) ) → ∃ 𝑝 ∈ ( mzPoly ‘ ℕ ) { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ℕ ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑢 ) = 0 ) } = { 𝑎 ∣ ∃ 𝑏 ∈ ( ℕ0 ↑m ℕ ) ( 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑏 ) = 0 ) } ) |
22 |
|
eldioph3b |
⊢ ( { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ℕ ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑢 ) = 0 ) } ∈ ( Dioph ‘ 𝑁 ) ↔ ( 𝑁 ∈ ℕ0 ∧ ∃ 𝑝 ∈ ( mzPoly ‘ ℕ ) { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ℕ ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑢 ) = 0 ) } = { 𝑎 ∣ ∃ 𝑏 ∈ ( ℕ0 ↑m ℕ ) ( 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑏 ) = 0 ) } ) ) |
23 |
1 21 22
|
sylanbrc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ( mzPoly ‘ ℕ ) ) → { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ℕ ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑢 ) = 0 ) } ∈ ( Dioph ‘ 𝑁 ) ) |